Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

BUG: Cut fails when number of bins is more than 102 on a 32-bit machine. #45591

Open
Labels
32bit32-bit systems Bug Dtype ConversionsUnexpected or buggy dtype conversions cutcut, qcut
@QubinX

Description

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import numpy as np
import pandas as pd
number = 102
example = pd.cut(x=pd.Series(range(100)), bins=pd.Series(range(number))) 
print(example)

Issue Description

The above code works as expected when number is <102, but fails when number >=102. This only occurs on a 32 bit machine. When this is run on a 64 bit machine, it does not fail.

The traceback when this fails is:
Traceback (most recent call last):

File "C:\Users\careyc\OneDrive - Harman Technology Ltd\Python\densitometer\cutbugtest.py", line 10, in
example = pd.cut(x=pd.Series(range(100)), bins=pd.Series(range(102)))

File "C:\Users\careyc\Anaconda3\lib\site-packages\pandas\core\reshape\tile.py", line 287, in cut
fac, bins = _bins_to_cuts(

File "C:\Users\careyc\Anaconda3\lib\site-packages\pandas\core\reshape\tile.py", line 450, in _bins_to_cuts
labels = Categorical(

File "C:\Users\careyc\Anaconda3\lib\site-packages\pandas\core\arrays\categorical.py", line 456, in init
codes = _get_codes_for_values(values, dtype.categories)

File "C:\Users\careyc\Anaconda3\lib\site-packages\pandas\core\arrays\categorical.py", line 2666, in _get_codes_for_values
return coerce_indexer_dtype(categories.get_indexer_for(values), categories)

File "C:\Users\careyc\Anaconda3\lib\site-packages\pandas\core\indexes\base.py", line 5274, in get_indexer_for
if self._index_as_unique:

File "pandas_libs\properties.pyx", line 37, in pandas._libs.properties.CachedProperty.get

File "C:\Users\careyc\Anaconda3\lib\site-packages\pandas\core\indexes\interval.py", line 727, in _index_as_unique
return not self.is_overlapping and self._engine._na_count < 2

File "C:\Users\careyc\Anaconda3\lib\site-packages\pandas\core\indexes\interval.py", line 454, in is_overlapping
return self._engine.is_overlapping

File "pandas_libs\properties.pyx", line 37, in pandas._libs.properties.CachedProperty.get

File "C:\Users\careyc\Anaconda3\lib\site-packages\pandas\core\indexes\interval.py", line 325, in _engine
return IntervalTree(left, right, closed=self.closed)

File "pandas_libs\intervaltree.pxi", line 77, in pandas._libs.interval.IntervalTree.init

File "pandas_libs\intervaltree.pxi", line 1025, in pandas._libs.interval.Int64ClosedRightIntervalNode.init

File "pandas_libs\intervaltree.pxi", line 1069, in pandas._libs.interval.Int64ClosedRightIntervalNode.new_child_node

File "pandas_libs\intervaltree.pxi", line 196, in pandas._libs.interval.take

TypeError: Cannot cast array data from dtype('int64') to dtype('int32') according to the rule 'safe'

Expected Behavior

Would expect the output to be:
0 NaN
1 (0.0, 1.0]
2 (1.0, 2.0]
3 (2.0, 3.0]
4 (3.0, 4.0]
.....
95 (94.0, 95.0]
96 (95.0, 96.0]
97 (96.0, 97.0]
98 (97.0, 98.0]
99 (98.0, 99.0]
100 (99.0, 100.0]
Length: 101, dtype: category
Categories (101, interval[int64, right]): [(0, 1] < (1, 2] < (2, 3] < (3, 4] ... (96, 97] <
(97, 98] < (98, 99] < (99, 100] < (100, 101]]

Installed Versions

INSTALLED VERSIONS

commit : 66e3805
python : 3.8.12.final.0
python-bits : 32
OS : Windows
OS-release : 10
Version : 10.0.19042
machine : x86
processor : x86 Family 6 Model 23 Stepping 10, GenuineIntel
byteorder : little
LC_ALL : None
LANG : en
LOCALE : English_United Kingdom.1252

pandas : 1.3.5
numpy : 1.21.2
pytz : 2021.3
dateutil : 2.8.2
pip : 21.2.4
setuptools : 58.0.4
Cython : 0.29.25
pytest : 6.2.4
hypothesis : None
sphinx : 3.2.1
blosc : None
feather : None
xlsxwriter : 3.0.2
lxml.etree : 4.7.1
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : 7.29.0
pandas_datareader: None
bs4 : 4.10.0
bottleneck : 1.3.2
fsspec : 2022010
fastparquet : None
gcsfs : None
matplotlib : 3.5.0
numexpr : 2.8.1
odfpy : None
openpyxl : 3.0.9
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.6.2
sqlalchemy : 1.4.27
tables : 3.6.1
tabulate : None
xarray : None
xlrd : 2.0.1
xlwt : 1.3.0
numba : 0.51.2

Metadata

Metadata

Assignees

No one assigned

    Labels

    32bit32-bit systems Bug Dtype ConversionsUnexpected or buggy dtype conversions cutcut, qcut

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

      Relationships

      None yet

      Development

      No branches or pull requests

      Issue actions

        AltStyle によって変換されたページ (->オリジナル) /