Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Inconsistent changes of dtype on assignment to multiindexed columns #18415

Open
Labels
32bit32-bit systems Bug Dtype ConversionsUnexpected or buggy dtype conversions IndexingRelated to indexing on series/frames, not to indexes themselves MultiIndex
@da-woods

Description

I've found some odd behaviour when assigning to columns with a multiindex. I'm trying to use an array with a float32 dtype, but it's being converted to a float64 dtype under some circumstances. For large arrays this is accompanied by a signifcant slowdown.

>>> import sys; sys.version
sys.version
'3.6.3 (default, Oct 11 2017, 14:49:33) [GCC]'
>>> import pandas as pd
>>> pd.__version__
'0.21.0'
>>> import numpy as np
>>> A = pd.DataFrame(np.zeros((6,5),dtype=np.float32)); A = pd.concat([A,A],axis=1,keys=[1,2])
>>> A
 1 2 
 0 1 2 3 4 0 1 2 3 4
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
>>> A.loc[:,(1,1)] = np.ones((6,),dtype=np.float32) # index a single column - doesn't change dtypes
>>> (A.dtypes==np.float32).all()
True
>>> A.loc[:,(1,slice(2,3))] = np.ones((6,2),dtype=np.float32) # Index multiple columns - changes dtypes
>>> (A.dtypes==np.float32).all()
False

So indexing a single column keeps the dtype as float32 (as I would expect), but indexing multiple columns changes it to float64. The behaviour is also different if you write to part of a column (doesn't change) vs a whole column (does change):

>>> A = pd.DataFrame(np.zeros((6,5),dtype=np.float32)); A = pd.concat([A,A],axis=1,keys=[1,2])
>>> A.loc[2:3,(1,slice(2,3))] = np.ones((2,2),dtype=np.float32) # index a section of multiple columns - doesn’t change dtypes
>>> (A.dtypes==np.float32).all()
True
>>> A.loc[0:5,(1,slice(2,3))] = np.ones((6,2),dtype=np.float32) # but indexing a complete section does change dtypes
>>> (A.dtypes==np.float32).all()
False

If the multiindex is on axis 0 rather than axis 1 then it does not change the dtypes

>>> A = pd.DataFrame(np.zeros((6,5),dtype=np.float32)); A = pd.concat([A,A],axis=1,keys=[1,2])
>>> A = A.T
>>> A.loc[(1,slice(2,3)),:] = np.ones((6,2),dtype=np.float32).T # doesn’t change any dtypes
>>> (A.dtypes==np.float32).all()
True

This odd behaviour only applies to multiindexes:

>>> A = pd.DataFrame(np.zeros((6,5),dtype=np.float32))
>>> A.loc[:,2:3] = np.ones((6,2),dtype=np.float32) # does not change dtypes
>>> (A.dtypes==np.float32).all()
True

Finally it also applies to iloc as well as loc:

>>> A = pd.DataFrame(np.zeros((6,5),dtype=np.float32)); A = pd.concat([A,A],axis=1,keys=[1,2])
>>> A.iloc[:,2:4] = np.ones((6,2),dtype=np.float32) # changes dtypes
>>> (A.dtypes==np.float32).all()
False

Metadata

Metadata

Assignees

No one assigned

    Labels

    32bit32-bit systems Bug Dtype ConversionsUnexpected or buggy dtype conversions IndexingRelated to indexing on series/frames, not to indexes themselves MultiIndex

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

      Relationships

      None yet

      Development

      No branches or pull requests

      Issue actions

        AltStyle によって変換されたページ (->オリジナル) /