|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 20, |
| 6 | + "metadata": { |
| 7 | + "collapsed": true |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "import numpy as np\n", |
| 12 | + "import pandas as pd\n", |
| 13 | + "import random\n", |
| 14 | + "import matplotlib.pyplot as plt\n", |
| 15 | + "import matplotlib.animation as animation" |
| 16 | + ] |
| 17 | + }, |
| 18 | + { |
| 19 | + "cell_type": "code", |
| 20 | + "execution_count": 28, |
| 21 | + "metadata": { |
| 22 | + "collapsed": true |
| 23 | + }, |
| 24 | + "outputs": [], |
| 25 | + "source": [ |
| 26 | + "class random_nos:\n", |
| 27 | + " def __init__(self,size,max_num = 1000):\n", |
| 28 | + " self.rand_list = random.sample(range(0,max_num), size)\n", |
| 29 | + " self.i = 0\n", |
| 30 | + " self.max_num = max_num\n", |
| 31 | + " self.size = size\n", |
| 32 | + " \n", |
| 33 | + " def generate(self):\n", |
| 34 | + " self.rand_list = random.sample(range(0,self.max_num), self.size)\n", |
| 35 | + " return self.rand_list\n", |
| 36 | + " \n", |
| 37 | + " def visualize(self):\n", |
| 38 | + " length = len(self.rand_list)\n", |
| 39 | + " index = np.arange(length)\n", |
| 40 | + " color = ['gray']*length\n", |
| 41 | + " #color[self.i] = 'blue'\n", |
| 42 | + " #color[self.i+1] = 'blue'\n", |
| 43 | + " fig = plt.figure()\n", |
| 44 | + " plt.bar(index, test.rand_list,color=color)\n", |
| 45 | + " plt.xticks(index)\n", |
| 46 | + " plt.Figure(figsize=(10,10))\n", |
| 47 | + " plt.show()\n", |
| 48 | + " #self.i += 1\n", |
| 49 | + " \n", |
| 50 | + " \n", |
| 51 | + "\n", |
| 52 | + " \n", |
| 53 | + " \n", |
| 54 | + " " |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": 29, |
| 60 | + "metadata": {}, |
| 61 | + "outputs": [], |
| 62 | + "source": [ |
| 63 | + "test = random_nos(25)" |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "code", |
| 68 | + "execution_count": 30, |
| 69 | + "metadata": {}, |
| 70 | + "outputs": [ |
| 71 | + { |
| 72 | + "data": { |
| 73 | + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFH1JREFUeJzt3X2wXPdd3/H3Byl2bOdJRooqS0qltnKKnSl5UI1DQqBR\nwE7IRIYWjzKEKo2pp+AEJ6UFiXQQGkYzBgKlnWmSMXFAJcZGdQwWGcCWRULamcZGfooly44VbEcS\negIKoTDjxM63f+xxs8j7pLtXV1f+vV8zO3v27Pec89v7293POWfPOTdVhSSpTd9yphsgSTpzDAFJ\napghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwxae6QaMs3jx4lq1atWZboYknTUWL17M\nnXfeeWdVXTmudt6HwKpVq9izZ8+ZboYknVWSLJ6kzt1BktQwQ0CSGmYISFLDDAFJapghIEkNGxsC\nST6Z5HiSvX3jLkyyK8nj3f2ivuc2JzmQ5LEkV/SNf0OSh7vn/muSzP7LkSSdikm2BH4DOPlY003A\n7qpaA+zuHpPkEmADcGk3zUeTLOim+Rjwb4E13W3s8auSpNNrbAhU1eeBvzxp9Hpgeze8Hbiqb/yt\nVfV0VT0BHAAuS7IMeFlVfaF6/8/yv/dNI0k6Q2b6m8DSqjrSDR8FlnbDy4GDfXWHunHLu+GTx0uS\nzqCpzxiuqkoyq/+tPsm1wLUAr3rVq2Zz1pJOwdatW8fWbNmyZQ5aotNlpiFwLMmyqjrS7eo53o0/\nDKzsq1vRjTvcDZ88fqCquhG4EWDt2rWzGjCSTp9JQgMMjvlkpruDdgIbu+GNwB194zckOTfJano/\nAN/b7Tr6apLLu6OC/nXfNJKkM2TslkCSW4DvARYnOQRsAW4AdiS5BngKuBqgqvYl2QE8AjwDXFdV\nz3az+nF6RxqdB/xBd5MknUFjQ6Cq3j3kqXVD6rcB2waM3wO85pRaJ0k6rTxjWJIaZghIUsMMAUlq\n2Lz/z2KSZoeHb2oQtwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAk\nNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGrbwTDdA\nmg1bt24dW7Nly5Y5aIl0djEEJGkKk6yAwPxdCXF3kCQ1zBCQpIa5O0hNOts34aXZ4paAJDXMEJCk\nhk0VAkk+lGRfkr1Jbkny4iQXJtmV5PHuflFf/eYkB5I8luSK6ZsvSZrGjEMgyXLgJ4C1VfUaYAGw\nAdgE7K6qNcDu7jFJLumevxS4EvhokgXTNV+SNI1pdwctBM5LshA4H/gzYD2wvXt+O3BVN7weuLWq\nnq6qJ4ADwGVTLl+SNIUZh0BVHQY+AnwFOAL8dVXdBSytqiNd2VFgaTe8HDjYN4tD3ThJ0hkyze6g\nRfTW7lcDFwEXJHlPf01VFVAzmPe1SfYk2XPixImZNlGSNMY0u4PeBjxRVSeq6uvA7cB3AseSLAPo\n7o939YeBlX3Tr+jGPU9V3VhVa6tq7ZIlS6ZooiRplGlC4CvA5UnOTxJgHbAf2Als7Go2And0wzuB\nDUnOTbIaWAPcO8XyJUlTmvEZw1V1T5LbgPuBZ4AHgBuBlwA7klwDPAVc3dXvS7IDeKSrv66qnp2y\n/ZKkKUx12Yiq2gKcfF790/S2CgbVbwO2TbNMSdLs8YxhSWqYISBJDfMqolPwSpSSznZuCUhSwwwB\nSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ3z2kFzzOsNSZpP3BKQ\npIa5JdDHtXRJrXFLQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLD\nDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUsKlCIMkrktyW5NEk+5O8McmFSXYleby7X9RXvznJ\ngSSPJbli+uZLkqYx7ZbAfwH+sKr+KfDtwH5gE7C7qtYAu7vHJLkE2ABcClwJfDTJgimXL0mawoxD\nIMnLgbcANwFU1deq6q+A9cD2rmw7cFU3vB64taqerqongAPAZTNdviRpetNsCawGTgC/nuSBJJ9I\ncgGwtKqOdDVHgaXd8HLgYN/0h7pxz5Pk2iR7kuw5ceLEFE2UJI0yTQgsBF4PfKyqXgf8Ld2un+dU\nVQF1qjOuqhuram1VrV2yZMkUTZQkjbJwimkPAYeq6p7u8W30QuBYkmVVdSTJMuB49/xhYGXf9Cu6\ncZKArVu3TlS3ZcuW09wStWTGWwJVdRQ4mOTV3ah1wCPATmBjN24jcEc3vBPYkOTcJKuBNcC9M12+\nJGl602wJAHwAuDnJOcCfAv+GXrDsSHIN8BRwNUBV7Uuyg15QPANcV1XPTrl8SdIUpgqBqnoQWDvg\nqXVD6rcB26ZZpiRp9njGsCQ1zBCQpIYZApLUsGl/GJaa4OGbeqFyS0CSGmYISFLDDAFJapghIEkN\nMwQkqWGGgCQ1zBCQpIZ5noB0lvLcBc0GtwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqY\nISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsO8lLRO2alewthLHkvzl1sCktQwQ0CSGmYI\nSFLDDAFJapghIEkNmzoEkixI8kCSz3SPL0yyK8nj3f2ivtrNSQ4keSzJFdMuW5I0ndk4RPR6YD/w\nsu7xJmB3Vd2QZFP3+KeTXAJsAC4FLgLuTnJxVT07C22QpLPCfDtkeqotgSQrgO8HPtE3ej2wvRve\nDlzVN/7Wqnq6qp4ADgCXTbN8SdJ0pt0d9KvATwHf6Bu3tKqOdMNHgaXd8HLgYF/doW6cJOkMmXEI\nJHkncLyq7htWU1UF1AzmfW2SPUn2nDhxYqZNlCSNMc2WwJuAdyV5ErgVeGuSTwHHkiwD6O6Pd/WH\ngZV906/oxj1PVd1YVWurau2SJUumaKIkaZQZh0BVba6qFVW1it4Pvn9UVe8BdgIbu7KNwB3d8E5g\nQ5Jzk6wG1gD3zrjlkqSpnY4LyN0A7EhyDfAUcDVAVe1LsgN4BHgGuM4jgyTpzJqVEKiqzwGf64b/\nAlg3pG4bsG02lilJmp6XkpZ01phvx9i/EHjZCElqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CS\nGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlh\nhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlq2MIz3QDNrq1bt05Ut2XLltPcEklnA7cEJKlhhoAk\nNcwQkKSGGQKS1DBDQJIaZghIUsNmHAJJVib5bJJHkuxLcn03/sIku5I83t0v6ptmc5IDSR5LcsVs\nvABJ0sxNc57AM8BPVtX9SV4K3JdkF/BeYHdV3ZBkE7AJ+OkklwAbgEuBi4C7k1xcVc9O9xI0rUnO\nLfC8AumFacZbAlV1pKru74b/BtgPLAfWA9u7su3AVd3weuDWqnq6qp4ADgCXzXT5kqTpzcpvAklW\nAa8D7gGWVtWR7qmjwNJueDlwsG+yQ924QfO7NsmeJHtOnDgxG02UJA0wdQgkeQnwaeCDVfXV/ueq\nqoA61XlW1Y1Vtbaq1i5ZsmTaJkqShpjq2kFJXkQvAG6uqtu70ceSLKuqI0mWAce78YeBlX2Tr+jG\nSS84XsNJZ4tpjg4KcBOwv6p+pe+pncDGbngjcEff+A1Jzk2yGlgD3DvT5UuSpjfNlsCbgB8BHk7y\nYDfuZ4AbgB1JrgGeAq4GqKp9SXYAj9A7sug6jwySpDNrxiFQVf8LyJCn1w2ZZhuwbabLlCTNLs8Y\nlqSGGQKS1DBDQJIa5r+X1Lzj4ZXS3HFLQJIaZghIUsPcHSRJfVrbHemWgCQ1zBCQpIYZApLUMENA\nkhpmCEhSw17QRwe19iu/JJ0qtwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDTME\nJKlhL+gzhiVpkisHtHzVALcEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSp\nYXMeAkmuTPJYkgNJNs318iVJ3zSnIZBkAfDfgLcDlwDvTnLJXLZBkvRNc33toMuAA1X1pwBJbgXW\nA4/McTvOGpNc9wTavvaJpJmb6xBYDhzse3wI+I45boOkecKVnDMvVTV3C0v+FXBlVf1o9/hHgO+o\nqvefVHctcG338NXAY7PYjMXAn8+j+rlYRouvYS6W4WuYH8t4IbRpJq9hlD8HqKorx1ZW1ZzdgDcC\nd/Y93gxsnuM27JlP9fOxTS+E1zAf2+RrmB/187FNM3kNs3Wb66OD/gRYk2R1knOADcDOOW6DJKkz\np78JVNUzSd4P3AksAD5ZVfvmsg2SpG+a8/8sVlW/D/z+XC+3z43zrH4ultHia5iLZfga5scyXght\nmslrmBVz+sOwJGl+8bIRktSwZkLgVC9XkeSTSY4n2Tvh/Fcm+WySR5LsS3L9mPoXJ7k3yUNd/UQH\nTCdZkOSBJJ+ZsP7JJA8neTDJngnqX5HktiSPJtmf5I0jal/dzfe521eTfHDM/D/Uvd69SW5J8uIJ\n2nR9V79v0PwH9VWSC5PsSvJ4d79ogml+qFvGN5KsnaD+l7q/0xeT/E6SV4yp//mu9sEkdyW5aFR9\n33M/maSSLJ6gTT+X5HBfn7xj3DKSfKB7HfuS/OKY+f9237yfTPLgmPrXJvnCc++/JJdN8Bq+Pcn/\n7t63v5fkZX3PDfycDevvEfUD+3pE/cC+HlE/qq9HflcM6+/T5kwdljSXN3o/Qn8Z+EfAOcBDwCVj\npnkL8Hpg74TLWAa8vht+KfClUcsAArykG34RcA9w+QTL+ffAbwGfmbBdTwKLT+FvtR340W74HOAV\np/A3Pgr8wxE1y4EngPO6xzuA946Z72uAvcD59H7Duhv4J+P6CvhFYFM3vAn4hQmm+TZ656V8Dlg7\nQf33AQu74V/oX8aQ+pf1Df8E8PFx7zdgJb0DKZ46uR+HLOPngP8w6Xsa+Bfd3/Tc7vErJ/0MAL8M\n/OyY+d8FvL0bfgfwuQna9CfAd3fD7wN+ftznbFh/j6gf2Ncj6gf29Yj6UX099LtiVH+frlsrWwL/\n/3IVVfU14LnLVQxVVZ8H/nLSBVTVkaq6vxv+G2A/vS+9YfVVVf+3e/ii7jbyB5okK4DvBz4xabtO\nRZKX0/tQ3tS18WtV9VcTTr4O+HJVPTWmbiFwXpKF9L7Y/2xM/bcB91TV31XVM8AfAz/YXzCkr9bT\nCzS6+6vGTVNV+6tq4ImJQ+rv6toE8AVgxZj6r/Y9vIC+/h7xfvvPwE8x4L0xg/fooPofA26oqqe7\nmuOTzD9JgKuBW8bUF/DcmvzLOam/h0xzMfD5bngX8C/76od9zgb297D6YX09on5gX4+oH9XXo74r\nhvb36dJKCAy6XMXQL+hpJVkFvI7e2v2ougXd5vRxYFdVjawHfpXeG+Qbp9CcAu5Ocl96Z2KPsho4\nAfx6erucPpHkggmXs4G+L4SBDak6DHwE+ApwBPjrqrprzHz3At+V5FuTnE9vbXLlBO1ZWlVHuuGj\nwNIJppnG+4A/GFeUZFuSg8APAz87pnY9cLiqHjrFtnyg2xXxyZy0G2yAi+n9fe9J8sdJ/vmEy/gu\n4FhVPT6m7oPAL3Wv+SP0ThAdZx/fXEn7IYb090mfs7H9PenncoL6gX19cv0kfd0/zRT9PZVWQmDO\nJHkJ8GnggyetDTxPVT1bVa+lt1ZxWZLXjJjvO4HjVXXfKTbpzd0y3g5cl+QtI2oX0ts0/1hVvQ74\nW3qb1iOld+Lfu4D/MaZuEb0P92rgIuCCJO8ZNU1V7ae3+X0X8IfAg8Cz49p00jyK07hmleTDwDPA\nzRO05cNVtbKrff+wui7wfoYxQTHAx+jt9nwtvaD95TH1C4ELgcuB/wjs6Nbyx3k3Y0K/82PAh7rX\n/CG6rcwx3gf8eJL76O0u+drJBaM+Z4P6+1Q+l6Pqh/X1oPpxfd0/TTfPmfT31FoJgcP8/bWJFd24\nWZXkRfQ69eaqun3S6bpdLp8FRl3n403Au5I8SW931luTfGqCeR/u7o8Dv0Nv19gwh4BDfVskt9EL\nhXHeDtxfVcfG1L0NeKKqTlTV14Hbge8cN/Oquqmq3lBVbwH+D719qOMcS7IMoLs/PqZ+RpK8F3gn\n8MPdl8+kbqZvN8cA/5heWD7U9fkK4P4k/2DUTKvqWLdy8Q3g1xjd39Dr89u73ZP30tvKHPmDZLcr\n7weB3x4zb4CN9PoZeisJ49pDVT1aVd9XVW+gFzRfPmn5gz5nQ/v7VD+Xw+qH9fUE839eXw+YZkb9\nPRtaCYHTfrmKbu3pJmB/Vf3KBPVL+o4wOA/4XuDRYfVVtbmqVlTVKnrt/6OqGrkWneSCJC99bpje\nj1tDj3aqqqPAwSSv7katY7LLfE+6VvgV4PIk53d/r3X09oeOlOSV3f2r6H35/NYEy9pJ7wuI7v6O\nCaY5JUmupLd77l1V9XcT1K/pe7ie0f39cFW9sqpWdX1+iN6PiUfHLGNZ38MfYER/d36X3o/DJLmY\n3sEA4y5k9jbg0ao6NKYOer8BfHc3/FZg3O6j/v7+FuA/AR/ve27Y52xgf8/gczmwflhfj6gf2teD\npplpf8+KmoNfn+fDjd6+5C/RW6v48AT1t9DbnP561yHXjKl/M71N0C/S22XxIPCOEfX/DHigq99L\n31EWE7Tte5jg6CB6uwUe6m77JnzdrwX2dO36XWDRmPoLgL8AXj5h27fS+0DsBX6T7qiUMdP8T3ph\n9BCwbpK+Ar4V2E3vS+du4MIJpvmBbvhp4Bh//2KHg+oP0Put6bn+/viY+k93r/uLwO/R+wFxovcb\nA47yGrKM3wQe7paxE1g2pv4c4FNdu+4H3jquTcBvAP9uwn54M3Bf13f3AG+YYJrr6X1WvwTcQHdS\n66jP2bD+HlE/sK9H1A/s6xH1o/p67HfFoP4+XTfPGJakhrWyO0iSNIAhIEkNMwQkqWGGgCQ1zBCQ\npIYZApLUMENAkhpmCEhSw/4fhVslxE4uDAMAAAAASUVORK5CYII=\n", |
| 74 | + "text/plain": [ |
| 75 | + "<matplotlib.figure.Figure at 0x28849c7f4a8>" |
| 76 | + ] |
| 77 | + }, |
| 78 | + "metadata": {}, |
| 79 | + "output_type": "display_data" |
| 80 | + } |
| 81 | + ], |
| 82 | + "source": [ |
| 83 | + "test.visualize()" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": 31, |
| 89 | + "metadata": { |
| 90 | + "scrolled": true |
| 91 | + }, |
| 92 | + "outputs": [ |
| 93 | + { |
| 94 | + "name": "stderr", |
| 95 | + "output_type": "stream", |
| 96 | + "text": [ |
| 97 | + "C:\\Users\\nickj\\AppData\\Local\\Continuum\\Anaconda3\\envs\\py35\\lib\\site-packages\\matplotlib\\animation.py:1021: UserWarning: MovieWriter pillow unavailable\n", |
| 98 | + " warnings.warn(\"MovieWriter %s unavailable\" % writer)\n" |
| 99 | + ] |
| 100 | + } |
| 101 | + ], |
| 102 | + "source": [ |
| 103 | + "length = 25\n", |
| 104 | + "index = np.arange(length)\n", |
| 105 | + "\n", |
| 106 | + "fig = plt.figure(figsize=(8, 4))\n", |
| 107 | + "plt.xticks(index)\n", |
| 108 | + "\n", |
| 109 | + "test = random_nos(length)\n", |
| 110 | + "\n", |
| 111 | + "data = []\n", |
| 112 | + "colors = []\n", |
| 113 | + "titles = []\n", |
| 114 | + "\n", |
| 115 | + "for i in range(100):\n", |
| 116 | + " color = ['gray']*length\n", |
| 117 | + " random_int = random.randint(1,length-2)\n", |
| 118 | + " color[random_int] = 'blue'\n", |
| 119 | + " color[random_int+1] = 'blue'\n", |
| 120 | + " colors.append(color)\n", |
| 121 | + "\n", |
| 122 | + " \n", |
| 123 | + " data.append(test.generate())\n", |
| 124 | + " titles.append('Step: ' + str(random_int))\n", |
| 125 | + "\n", |
| 126 | + "\n", |
| 127 | + "rects = plt.bar(index, data[0],color=colors[0])\n", |
| 128 | + "#ttl = plt.text(10,1050,titles[0])\n", |
| 129 | + "\n", |
| 130 | + "\n", |
| 131 | + "def animate(i):\n", |
| 132 | + " #for rect, yi,c,t in zip(rects, data[i],colors[i],titles[i]):\n", |
| 133 | + " for rect, yi,c in zip(rects, data[i],colors[i]):\n", |
| 134 | + " #for rect, yi in zip(rects, data[i]):\n", |
| 135 | + " rect.set_height(yi)\n", |
| 136 | + " rect.set_color(c)\n", |
| 137 | + " #ttl.set_text(t)\n", |
| 138 | + " #plt.draw()\n", |
| 139 | + " \n", |
| 140 | + " return rects\n", |
| 141 | + "\n", |
| 142 | + "anim = animation.FuncAnimation(fig, animate, frames=len(data), interval=250,)\n", |
| 143 | + "anim.save('bar.mp4', writer='pillow')#, dpi = 100)\n" |
| 144 | + ] |
| 145 | + }, |
| 146 | + { |
| 147 | + "cell_type": "code", |
| 148 | + "execution_count": 32, |
| 149 | + "metadata": {}, |
| 150 | + "outputs": [ |
| 151 | + { |
| 152 | + "data": { |
| 153 | + "text/html": [ |
| 154 | + "\n", |
| 155 | + " <video alt=\"test\" controls>\n", |
| 156 | + " <source src=\"bar.mp4\" type=\"video/mp4\">\n", |
| 157 | + " </video>\n" |
| 158 | + ], |
| 159 | + "text/plain": [ |
| 160 | + "<IPython.core.display.HTML object>" |
| 161 | + ] |
| 162 | + }, |
| 163 | + "execution_count": 32, |
| 164 | + "metadata": {}, |
| 165 | + "output_type": "execute_result" |
| 166 | + } |
| 167 | + ], |
| 168 | + "source": [ |
| 169 | + "from IPython.display import HTML\n", |
| 170 | + "\n", |
| 171 | + "HTML(\"\"\"\n", |
| 172 | + " <video alt=\"test\" controls>\n", |
| 173 | + " <source src=\"bar.mp4\" type=\"video/mp4\">\n", |
| 174 | + " </video>\n", |
| 175 | + "\"\"\")" |
| 176 | + ] |
| 177 | + }, |
| 178 | + { |
| 179 | + "cell_type": "code", |
| 180 | + "execution_count": null, |
| 181 | + "metadata": { |
| 182 | + "collapsed": true |
| 183 | + }, |
| 184 | + "outputs": [], |
| 185 | + "source": [] |
| 186 | + } |
| 187 | + ], |
| 188 | + "metadata": { |
| 189 | + "kernelspec": { |
| 190 | + "display_name": "Python 3", |
| 191 | + "language": "python", |
| 192 | + "name": "python3" |
| 193 | + }, |
| 194 | + "language_info": { |
| 195 | + "codemirror_mode": { |
| 196 | + "name": "ipython", |
| 197 | + "version": 3 |
| 198 | + }, |
| 199 | + "file_extension": ".py", |
| 200 | + "mimetype": "text/x-python", |
| 201 | + "name": "python", |
| 202 | + "nbconvert_exporter": "python", |
| 203 | + "pygments_lexer": "ipython3", |
| 204 | + "version": "3.5.3" |
| 205 | + } |
| 206 | + }, |
| 207 | + "nbformat": 4, |
| 208 | + "nbformat_minor": 2 |
| 209 | +} |
0 commit comments