Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 2451db9

Browse files
committed
Add iterative version of Euclidean algorithm.
1 parent c00c689 commit 2451db9

File tree

4 files changed

+51
-15
lines changed

4 files changed

+51
-15
lines changed

‎src/algorithms/math/euclidean-algorithm/__test__/euclieanAlgorithm.test.js‎ renamed to ‎src/algorithms/math/euclidean-algorithm/__test__/euclideanAlgorithm.test.js‎

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
import euclideanAlgorithm from '../euclideanAlgorithm';
22

33
describe('euclideanAlgorithm', () => {
4-
it('should calculate GCD', () => {
4+
it('should calculate GCD recursively', () => {
55
expect(euclideanAlgorithm(0, 0)).toBe(0);
66
expect(euclideanAlgorithm(2, 0)).toBe(2);
77
expect(euclideanAlgorithm(0, 2)).toBe(2);
Lines changed: 26 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,26 @@
1+
import euclideanAlgorithmIterative from '../euclideanAlgorithmIterative';
2+
3+
describe('euclideanAlgorithmIterative', () => {
4+
it('should calculate GCD iteratively', () => {
5+
expect(euclideanAlgorithmIterative(0, 0)).toBe(0);
6+
expect(euclideanAlgorithmIterative(2, 0)).toBe(2);
7+
expect(euclideanAlgorithmIterative(0, 2)).toBe(2);
8+
expect(euclideanAlgorithmIterative(1, 2)).toBe(1);
9+
expect(euclideanAlgorithmIterative(2, 1)).toBe(1);
10+
expect(euclideanAlgorithmIterative(6, 6)).toBe(6);
11+
expect(euclideanAlgorithmIterative(2, 4)).toBe(2);
12+
expect(euclideanAlgorithmIterative(4, 2)).toBe(2);
13+
expect(euclideanAlgorithmIterative(12, 4)).toBe(4);
14+
expect(euclideanAlgorithmIterative(4, 12)).toBe(4);
15+
expect(euclideanAlgorithmIterative(5, 13)).toBe(1);
16+
expect(euclideanAlgorithmIterative(27, 13)).toBe(1);
17+
expect(euclideanAlgorithmIterative(24, 60)).toBe(12);
18+
expect(euclideanAlgorithmIterative(60, 24)).toBe(12);
19+
expect(euclideanAlgorithmIterative(252, 105)).toBe(21);
20+
expect(euclideanAlgorithmIterative(105, 252)).toBe(21);
21+
expect(euclideanAlgorithmIterative(1071, 462)).toBe(21);
22+
expect(euclideanAlgorithmIterative(462, 1071)).toBe(21);
23+
expect(euclideanAlgorithmIterative(462, -1071)).toBe(21);
24+
expect(euclideanAlgorithmIterative(-462, -1071)).toBe(21);
25+
});
26+
});
Lines changed: 4 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -1,25 +1,15 @@
11
/**
2+
* Recursive version of Euclidean Algorithm of finding greatest common divisor (GCD).
23
* @param {number} originalA
34
* @param {number} originalB
45
* @return {number}
56
*/
6-
7-
/*Method 1: A bit Complex to understand*/
87
export default function euclideanAlgorithm(originalA, originalB) {
8+
// Make input numbers positive.
99
const a = Math.abs(originalA);
1010
const b = Math.abs(originalB);
1111

12+
// To make algorithm work faster instead of subtracting one number from the other
13+
// we may use modulo operation.
1214
return (b === 0) ? a : euclideanAlgorithm(b, a % b);
1315
}
14-
15-
/*Method 2: Easy to evaluate*/
16-
export default function euclideanAlgorithm2(originalA, originalB) {
17-
const a = Math.abs(originalA);
18-
const b = Math.abs(originalB);
19-
20-
while(a != b){
21-
[a,b] = a>b : [a-b, b] : [a, b-a]
22-
}
23-
24-
return a || b;
25-
}
Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,20 @@
1+
/**
2+
* Iterative version of Euclidean Algorithm of finding greatest common divisor (GCD).
3+
* @param {number} originalA
4+
* @param {number} originalB
5+
* @return {number}
6+
*/
7+
export default function euclideanAlgorithmIterative(originalA, originalB) {
8+
// Make input numbers positive.
9+
let a = Math.abs(originalA);
10+
let b = Math.abs(originalB);
11+
12+
// Subtract one number from another until both numbers would become the same.
13+
// This will be out GCD. Also quit the loop if one of the numbers is zero.
14+
while (a && b && a !== b) {
15+
[a, b] = a > b ? [a - b, b] : [a, b - a];
16+
}
17+
18+
// Return the number that is not equal to zero since the last subtraction (it will be a GCD).
19+
return a || b;
20+
}

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /