|
1 | | -import java.util.Arrays; |
| 1 | +import java.util.HashMap; |
| 2 | +import java.util.LinkedList; |
| 3 | +import java.util.Map; |
| 4 | +import java.util.PriorityQueue; |
2 | 5 |
|
3 | 6 | /*
|
4 | 7 | * @lc app=leetcode id=1334 lang=java
|
|
84 | 87 | // * Votes: 6
|
85 | 88 |
|
86 | 89 |
|
87 | | -// class Edge { |
88 | | -// int to; |
89 | | -// int weight; |
90 | | -// |
91 | | -// public Edge(int to, int weight){ |
92 | | -// this.to = to; |
93 | | -// this.weight = weight; |
94 | | -// } |
95 | | -// |
96 | | -// } |
97 | | -// |
98 | | -// /* Dijkstra Algorithm */ |
99 | | -// class Solution { |
100 | | -// public int findTheCity(int n, int[][] edges, int distanceThreshold) { |
101 | | -// |
102 | | -// LinkedList<Edge>[] graph = new LinkedList[n]; |
103 | | -// |
104 | | -// for(int i = 0; i < graph.length; i++){ |
105 | | -// graph[i] = new LinkedList<>(); |
106 | | -// } |
107 | | -// for(int[] edge : edges){ |
108 | | -// graph[edge[0]].add(new Edge(edge[1],edge[2])); |
109 | | -// graph[edge[1]].add(new Edge(edge[0],edge[2])); |
110 | | -// } |
111 | | -// |
112 | | -// int maxVertex = -1; |
113 | | -// int maxNodes = n+1; |
114 | | -// for(int i = 0; i < n; i++){ |
115 | | -// int visits = bfs(graph,i,distanceThreshold); |
116 | | -// if(visits <= maxNodes){ |
117 | | -// maxVertex = i; |
118 | | -// maxNodes = Math.min(maxNodes,visits); |
119 | | -// } |
120 | | -// } |
121 | | -// |
122 | | -// return maxVertex; |
123 | | -// } |
124 | | -// |
125 | | -// public int bfs(LinkedList<Edge>[] graph, int vertex, int thresh){ |
126 | | -// Map<Integer,Integer> map = new HashMap<>(); |
127 | | -// |
128 | | -// PriorityQueue<Edge> pq = new PriorityQueue<>((Edge a, Edge b) -> (a.weight - b.weight)); |
129 | | -// pq.offer(new Edge(vertex,0)); |
130 | | -// |
131 | | -// while(!pq.isEmpty()){ |
132 | | -// Edge edge = pq.remove(); |
133 | | -// if(map.containsKey(edge.to) && edge.weight > map.get(edge.to)) continue; |
134 | | -// map.put(edge.to,edge.weight); |
135 | | -// |
136 | | -// for(Edge e : graph[edge.to]){ |
137 | | -// int dist = e.weight + edge.weight; |
138 | | -// if(dist > thresh) continue; |
139 | | -// if(!map.containsKey(e.to) || (map.get(e.to) > dist)){ |
140 | | -// map.put(e.to,dist); |
141 | | -// pq.offer(new Edge(e.to,dist)); |
142 | | -// } |
143 | | -// } |
144 | | -// } |
145 | | -// |
146 | | -// return map.size() - 1; |
147 | | -// } |
148 | | -// } |
| 90 | +/* Dikstra Algorithm */ |
| 91 | +class Edge { |
| 92 | + int to; |
| 93 | + int weight; |
149 | 94 |
|
150 | | -/* Floyd Warshall */ |
| 95 | + public Edge(int to, int weight){ |
| 96 | + this.to = to; |
| 97 | + this.weight = weight; |
| 98 | + } |
| 99 | +} |
| 100 | + |
| 101 | +/* Dijkstra Algorithm */ |
151 | 102 | class Solution {
|
152 | 103 | public int findTheCity(int n, int[][] edges, int distanceThreshold) {
|
153 | | - // This needs to be a float because it needs to store the Integer.MAX_VALUE. |
154 | | - // Else if this is int, adding a positive number to the max value an integer |
155 | | - // can handle, the bits will overflow and becomes a negative number. |
156 | | - // Alternatively, instead of the MAX_VALUE as a placeholder, since the |
157 | | - // constraint for distanceThreshold <= 10^4, we can initialize it with |
158 | | - // anything greater than the threshold value (i.e., 10001). |
159 | | - float[][] dp = new float[n][n]; |
160 | | - |
161 | | - // Initialize dp |
162 | | - for (int i = 0; i < n; i++) { |
163 | | - Arrays.fill(dp[i], Integer.MAX_VALUE); |
164 | | - dp[i][i] = 0; |
| 104 | + // Create Linked list of edges as the vertex |
| 105 | + LinkedList<Edge>[] graph = new LinkedList[n]; |
| 106 | + |
| 107 | + for(int i = 0; i < graph.length; i++){ |
| 108 | + graph[i] = new LinkedList<>(); |
165 | 109 | }
|
166 | 110 |
|
167 | | - for (int[] edge : edges) { |
168 | | - // Fill dp with from to edge grid; dp[from][to] = weight |
169 | | - dp[edge[0]][edge[1]] = edge[2]; |
170 | | - dp[edge[1]][edge[0]] = edge[2]; |
| 111 | + // Fill the matrix graph with bidirectional direct Edges |
| 112 | + for(int[] edge : edges){ |
| 113 | + graph[edge[0]].add(newEdge(edge[1], edge[2])); // from |
| 114 | + graph[edge[1]].add(newEdge(edge[0], edge[2])); // to |
171 | 115 | }
|
172 | 116 |
|
173 | | - // Find all shortest path |
174 | | - for (int detour = 0; detour < n; detour++) { |
175 | | - for (int from = 0; from < n; from++) { |
176 | | - for (int to = 0; to < n; to++) { |
177 | | - // Update edge path if detour city is shorter than direct |
178 | | - if (dp[from][to] > dp[from][detour] + dp[detour][to]) |
179 | | - dp[from][to] = dp[from][detour] + dp[detour][to]; |
180 | | - } |
| 117 | + int maxNodes = n + 1; |
| 118 | + int maxVertex = -1; |
| 119 | + for(int i = 0; i < n; i++){ |
| 120 | + int visits = bfs(graph, i, distanceThreshold); |
| 121 | + if(visits <= maxNodes){ |
| 122 | + maxVertex = i; |
| 123 | + maxNodes = Math.min(maxNodes, visits); |
181 | 124 | }
|
182 | 125 | }
|
183 | 126 |
|
184 | | - int maxVisits = n + 1; |
185 | | - int cityWithLesserNeighbors = -1; |
186 | | - for(int from = 0; from < n; from++) { |
187 | | - // Get all neighboring cities with less than distanceThreshold edge |
188 | | - int neighborCitiesWithinLimit = 0; |
189 | | - for(int to = 0; to < n; to++) { |
190 | | - if(dp[from][to] <= distanceThreshold) |
191 | | - neighborCitiesWithinLimit++; |
192 | | - } |
193 | | - if(neighborCitiesWithinLimit <= maxVisits){ |
194 | | - cityWithLesserNeighbors = from; |
195 | | - maxVisits = Math.min(maxVisits, neighborCitiesWithinLimit); |
| 127 | + return maxVertex; |
| 128 | + } |
| 129 | + |
| 130 | + // Breadth-first Search (BFS) |
| 131 | + // Returns the number of visited nodes |
| 132 | + public int bfs(LinkedList<Edge>[] graph, int vertex, int thresh){ |
| 133 | + // Storage for the explored vertices |
| 134 | + Map<Integer,Integer> map = new HashMap<>(); |
| 135 | + |
| 136 | + // (Edge a, Edge b) -> (a.weight - b.weight) is a comparator lambda for |
| 137 | + // sorting the smallest value (a.weight - b.weight) first. Therefore, this |
| 138 | + // PQ prioritizes smaller numbers first (ascending). |
| 139 | + PriorityQueue<Edge> pq = new PriorityQueue<>((Edge a, Edge b) -> (a.weight - b.weight)); |
| 140 | + // Initialize with new Edge with 0 weight |
| 141 | + pq.offer(new Edge(vertex, 0)); |
| 142 | + |
| 143 | + while(!pq.isEmpty()){ |
| 144 | + Edge edge = pq.remove(); |
| 145 | + |
| 146 | + // Skip if edge already in the map and weight is greater |
| 147 | + if(map.containsKey(edge.to) && edge.weight > map.get(edge.to)) |
| 148 | + continue; |
| 149 | + |
| 150 | + // Add or update edge to map |
| 151 | + map.put(edge.to, edge.weight); |
| 152 | + |
| 153 | + // Traverse next edge |
| 154 | + for(Edge e : graph[edge.to]) { |
| 155 | + int dist = e.weight + edge.weight; |
| 156 | + |
| 157 | + if(dist > thresh) |
| 158 | + continue; |
| 159 | + |
| 160 | + // Skip if edge already in the map and distance is greater |
| 161 | + if(map.containsKey(e.to) && dist > map.get(e.to)) |
| 162 | + continue; |
| 163 | + |
| 164 | + // Add or update edge to map |
| 165 | + map.put(e.to, dist); |
| 166 | + pq.offer(new Edge(e.to,dist)); |
196 | 167 | }
|
197 | 168 | }
|
198 | 169 |
|
199 | | - return cityWithLesserNeighbors; |
| 170 | + return map.size() - 1; |
200 | 171 | }
|
201 | 172 | }
|
| 173 | + |
| 174 | +// /* Floyd Warshall */ |
| 175 | +// class Solution { |
| 176 | +// public int findTheCity(int n, int[][] edges, int distanceThreshold) { |
| 177 | +// // This needs to be a float because it needs to store the Integer.MAX_VALUE. |
| 178 | +// // Else if this is int, adding a positive number to the max value an integer |
| 179 | +// // can handle, the bits will overflow and becomes a negative number. |
| 180 | +// // Alternatively, instead of the MAX_VALUE as a placeholder, since the |
| 181 | +// // constraint for distanceThreshold <= 10^4, we can initialize it with |
| 182 | +// // anything greater than the threshold value (i.e., 10001). |
| 183 | +// float[][] dp = new float[n][n]; |
| 184 | +// |
| 185 | +// // Initialize dp |
| 186 | +// for (int i = 0; i < n; i++) { |
| 187 | +// Arrays.fill(dp[i], Integer.MAX_VALUE); |
| 188 | +// dp[i][i] = 0; |
| 189 | +// } |
| 190 | +// |
| 191 | +// for (int[] edge : edges) { |
| 192 | +// // Fill dp with from to edge grid; dp[from][to] = weight |
| 193 | +// dp[edge[0]][edge[1]] = edge[2]; |
| 194 | +// dp[edge[1]][edge[0]] = edge[2]; |
| 195 | +// } |
| 196 | +// |
| 197 | +// // Find all shortest path |
| 198 | +// for (int detour = 0; detour < n; detour++) { |
| 199 | +// for (int from = 0; from < n; from++) { |
| 200 | +// for (int to = 0; to < n; to++) { |
| 201 | +// // Update edge path if detour city is shorter than direct |
| 202 | +// if (dp[from][to] > dp[from][detour] + dp[detour][to]) |
| 203 | +// dp[from][to] = dp[from][detour] + dp[detour][to]; |
| 204 | +// } |
| 205 | +// } |
| 206 | +// } |
| 207 | +// |
| 208 | +// int maxVisits = n + 1; |
| 209 | +// int cityWithLesserNeighbors = -1; |
| 210 | +// for(int from = 0; from < n; from++) { |
| 211 | +// // Get all neighboring cities with less than distanceThreshold edge |
| 212 | +// int neighborCitiesWithinLimit = 0; |
| 213 | +// for(int to = 0; to < n; to++) { |
| 214 | +// if(dp[from][to] <= distanceThreshold) |
| 215 | +// neighborCitiesWithinLimit++; |
| 216 | +// } |
| 217 | +// if(neighborCitiesWithinLimit <= maxVisits){ |
| 218 | +// cityWithLesserNeighbors = from; |
| 219 | +// maxVisits = Math.min(maxVisits, neighborCitiesWithinLimit); |
| 220 | +// } |
| 221 | +// } |
| 222 | +// |
| 223 | +// return cityWithLesserNeighbors; |
| 224 | +// } |
| 225 | +// } |
0 commit comments