Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit a774169

Browse files
committed
docs: update docs description in ElasticSearch
* Update docs description in ElasticSearch * Welcome to join the WeChat Group, see doocs/doocs.github.io#6 for details.
1 parent 71928b7 commit a774169

File tree

3 files changed

+17
-12
lines changed

3 files changed

+17
-12
lines changed

‎docs/high-concurrency/es-architecture.md‎

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ es 中存储数据的**基本单位是索引**,比如说你现在要在 es 中
1919
index -> type -> mapping -> document -> field。
2020
```
2121

22-
这样吧,为了做个更直白的介绍,我在这里做个类比。
22+
这样吧,为了做个更直白的介绍,我在这里做个类比。但是切记,不要划等号,类比只是为了便于理解。
2323

2424
index 相当于 mysql 里的一张表。而 type 没法跟 mysql 里去对比,一个 index 里可以有多个 type,每个 type 的字段都是差不多的,但是有一些略微的差别。假设有一个 index,是订单 index,里面专门是放订单数据的。就好比说你在 mysql 中建表,有些订单是实物商品的订单,比如一件衣服、一双鞋子;有些订单是虚拟商品的订单,比如游戏点卡,话费充值。就两种订单大部分字段是一样的,但是少部分字段可能有略微的一些差别。
2525

‎docs/high-concurrency/es-optimizing-query-performance.md‎

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ es 在数据量很大的情况下(数十亿级别)如何提高查询效率
1010
说实话,es 性能优化是没有什么银弹的,啥意思呢?就是**不要期待着随手调一个参数,就可以万能的应对所有的性能慢的场景**。也许有的场景是你换个参数,或者调整一下语法,就可以搞定,但是绝对不是所有场景都可以这样。
1111

1212
### 性能优化的杀手锏——filesystem cache
13-
你往 es 里写的数据,实际上都写到磁盘文件里去了,查询的时候,操作系统会将磁盘文件里的数据自动缓存到 `filesystem cache` 里面去。
13+
你往 es 里写的数据,实际上都写到磁盘文件里去了,**查询的时候**,操作系统会将磁盘文件里的数据自动缓存到 `filesystem cache` 里面去。
1414

1515
![es-search-process](/images/es-search-process.png)
1616

@@ -24,11 +24,11 @@ es 的搜索引擎严重依赖于底层的 `filesystem cache`,你如果给 `fi
2424

2525
根据我们自己的生产环境实践经验,最佳的情况下,是仅仅在 es 中就存少量的数据,就是你要**用来搜索的那些索引**,如果内存留给 `filesystem cache` 的是 100G,那么你就将索引数据控制在 `100G` 以内,这样的话,你的数据几乎全部走内存来搜索,性能非常之高,一般可以在 1 秒以内。
2626

27-
比如说你现在有一行数据。`id,name,age ....` 30 个字段。但是你现在搜索,只需要根据 `id,name,age` 三个字段来搜索。如果你傻乎乎往 es 里写入一行数据所有的字段,就会导致说 `90%` 的数据是不用来搜索的,结果硬是占据了 es 机器上的 `filesystem cache` 的空间,单条数据的数据量越大,就会导致 `filesystem cahce` 能缓存的数据就越少。其实,仅仅写入 es 中要用来检索的**少数几个字段**就可以了,比如说就写入es `id,name,age` 三个字段,然后你可以把其他的字段数据存在 mysql/hbase 里,我们一般是建议用 `es + hbase` 这么一个架构。
27+
比如说你现在有一行数据。`id,name,age ....` 30 个字段。但是你现在搜索,只需要根据 `id,name,age` 三个字段来搜索。如果你傻乎乎往 es 里写入一行数据所有的字段,就会导致说 `90%` 的数据是不用来搜索的,结果硬是占据了 es 机器上的 `filesystem cache` 的空间,单条数据的数据量越大,就会导致 `filesystem cahce` 能缓存的数据就越少。其实,仅仅写入 es 中要用来检索的**少数几个字段**就可以了,比如说就写入 es `id,name,age` 三个字段,然后你可以把其他的字段数据存在 mysql/hbase 里,我们一般是建议用 `es + hbase` 这么一个架构。
2828

2929
hbase 的特点是**适用于海量数据的在线存储**,就是对 hbase 可以写入海量数据,但是不要做复杂的搜索,做很简单的一些根据 id 或者范围进行查询的这么一个操作就可以了。从 es 中根据 name 和 age 去搜索,拿到的结果可能就 20 个 `doc id`,然后根据 `doc id` 到 hbase 里去查询每个 `doc id` 对应的**完整的数据**,给查出来,再返回给前端。
3030

31-
写入 es 的数据最好小于等于,或者是略微大于 es 的 filesystem cache 的内存容量。然后你从 es 检索可能就花费 20ms,然后再根据 es 返回的 id 去 hbase 里查询,查 20 条数据,可能也就耗费个 30ms,可能你原来那么玩儿,1T 数据都放es,会每次查询都是 5~10s,现在可能性能就会很高,每次查询就是 50ms。
31+
写入 es 的数据最好小于等于,或者是略微大于 es 的 filesystem cache 的内存容量。然后你从 es 检索可能就花费 20ms,然后再根据 es 返回的 id 去 hbase 里查询,查 20 条数据,可能也就耗费个 30ms,可能你原来那么玩儿,1T 数据都放 es,会每次查询都是 5~10s,现在可能性能就会很高,每次查询就是 50ms。
3232

3333
### 数据预热
3434
假如说,哪怕是你就按照上述的方案去做了,es 集群中每个机器写入的数据量还是超过了 `filesystem cache` 一倍,比如说你写入一台机器 60G 数据,结果 `filesystem cache` 就 30G,还是有 30G 数据留在了磁盘上。
@@ -39,7 +39,7 @@ hbase 的特点是**适用于海量数据的在线存储**,就是对 hbase 可
3939

4040
或者是电商,你可以将平时查看最多的一些商品,比如说 iphone 8,热数据提前后台搞个程序,每隔 1 分钟自己主动访问一次,刷到 `filesystem cache` 里去。
4141

42-
对于那些你觉得比较热的,经常会有人访问的数据,最好**做一个专门的缓存预热子系统**,就是对热数据每隔一段时间,就提前访问一下,让数据进入 `filesystem cache` 里面去。这样下次别人访问的时候,一定性能会好一些
42+
对于那些你觉得比较热的经常会有人访问的数据,最好**做一个专门的缓存预热子系统**,就是对热数据每隔一段时间,就提前访问一下,让数据进入 `filesystem cache` 里面去。这样下次别人访问的时候,性能一定会好很多
4343

4444
### 冷热分离
4545
es 可以做类似于 mysql 的水平拆分,就是说将大量的访问很少、频率很低的数据,单独写一个索引,然后将访问很频繁的热数据单独写一个索引。最好是将**冷数据写入一个索引中,然后热数据写入另外一个索引中**,这样可以确保热数据在被预热之后,尽量都让他们留在 `filesystem os cache` 里,**别让冷数据给冲刷掉**
@@ -51,14 +51,14 @@ es 可以做类似于 mysql 的水平拆分,就是说将大量的访问很少
5151

5252
最好是先在 Java 系统里就完成关联,将关联好的数据直接写入 es 中。搜索的时候,就不需要利用 es 的搜索语法来完成 join 之类的关联搜索了。
5353

54-
document 模型设计是非常重要的,很多操作,不要在搜索的时候才想去执行各种复杂的乱七八糟的操作。es 能支持的操作就是那么多,不要考虑用 es 做一些它不好操作的事情。如果真的有那种操作,尽量在 document 模型设计的时候,写入的时候就完成。另外对于一些太复杂的操作,比如 join/nested/parent-child 搜索都要尽量避免,性能都很差的。
54+
document 模型设计是非常重要的,很多操作,不要在搜索的时候才想去执行各种复杂的乱七八糟的操作。es 能支持的操作就那么多,不要考虑用 es 做一些它不好操作的事情。如果真的有那种操作,尽量在 document 模型设计的时候,写入的时候就完成。另外对于一些太复杂的操作,比如 join/nested/parent-child 搜索都要尽量避免,性能都很差的。
5555

5656
### 分页性能优化
5757
es 的分页是较坑的,为啥呢?举个例子吧,假如你每页是 10 条数据,你现在要查询第 100 页,实际上是会把每个 shard 上存储的前 1000 条数据都查到一个协调节点上,如果你有个 5 个 shard,那么就有 5000 条数据,接着协调节点对这 5000 条数据进行一些合并、处理,再获取到最终第 100 页的 10 条数据。
5858

59-
分布式的,你要查第 100 页的 10 条数据,不可能说从 5 个 shard,每个 shard 就查 2 条数据?最后到协调节点合并成 10 条数据?你**必须**得从每个 shard 都查 1000 条数据过来,然后根据你的需求进行排序、筛选等等操作,最后再次分页,拿到里面第 100 页的数据。你翻页的时候,翻的越深,每个 shard 返回的数据就越多,而且协调节点处理的时间越长,非常坑爹。所以用 es 做分页的时候,你会发现越翻到后面,就越是慢。
59+
分布式的,你要查第 100 页的 10 条数据,不可能说从 5 个 shard,每个 shard 就查 2 条数据,最后到协调节点合并成 10 条数据吧?你**必须**得从每个 shard 都查 1000 条数据过来,然后根据你的需求进行排序、筛选等等操作,最后再次分页,拿到里面第 100 页的数据。你翻页的时候,翻的越深,每个 shard 返回的数据就越多,而且协调节点处理的时间越长,非常坑爹。所以用 es 做分页的时候,你会发现越翻到后面,就越是慢。
6060

61-
我们之前也是遇到过这个问题,用 es 作分页,前几页就几十毫秒,翻到 10 页或者几十页的时候,基本上就要 5~10 秒 才能查出来一页数据了
61+
我们之前也是遇到过这个问题,用 es 作分页,前几页就几十毫秒,翻到 10 页或者几十页的时候,基本上就要 5~10 秒才能查出来一页数据了
6262

6363
有什么解决方案吗?
6464
#### 不允许深度分页(默认深度分页性能很差)

‎docs/high-concurrency/es-write-query-search.md‎

Lines changed: 9 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -38,6 +38,7 @@ j2ee特别牛
3838
- query phase:每个 shard 将自己的搜索结果(其实就是一些 `doc id`)返回给协调节点,由协调节点进行数据的合并、排序、分页等操作,产出最终结果。
3939
- fetch phase:接着由协调节点根据 `doc id` 去各个节点上**拉取实际**`document` 数据,最终返回给客户端。
4040

41+
> 写请求是写入 primary shard,然后同步给所有的 replica shard;读请求可以从 primary shard 或 replica shard 读取,采用的是随机轮询算法。
4142
4243
### 写数据底层原理
4344

@@ -49,13 +50,13 @@ j2ee特别牛
4950

5051
每隔 1 秒钟,es 将 buffer 中的数据写入一个**新的** `segment file`,每秒钟会产生一个**新的磁盘文件** `segment file`,这个 `segment file` 中就存储最近 1 秒内 buffer 中写入的数据。
5152

52-
但是如果 buffer 里面此时没有数据,那当然不会执行 refresh 操作,如果buffer里面有数据,默认 1 秒钟执行一次 refresh 操作,刷入一个新的 segment file 中。
53+
但是如果 buffer 里面此时没有数据,那当然不会执行 refresh 操作,如果 buffer 里面有数据,默认 1 秒钟执行一次 refresh 操作,刷入一个新的 segment file 中。
5354

5455
操作系统里面,磁盘文件其实都有一个东西,叫做 `os cache`,即操作系统缓存,就是说数据写入磁盘文件之前,会先进入 `os cache`,先进入操作系统级别的一个内存缓存中去。只要 `buffer` 中的数据被 refresh 操作刷入 `os cache`中,这个数据就可以被搜索到了。
5556

5657
为什么叫 es 是**准实时**的? `NRT`,全称 `near real-time`。默认是每隔 1 秒 refresh 一次的,所以 es 是准实时的,因为写入的数据 1 秒之后才能被看到。可以通过 es 的 `restful api` 或者 `java api`,**手动**执行一次 refresh 操作,就是手动将 buffer 中的数据刷入 `os cache`中,让数据立马就可以被搜索到。只要数据被输入 `os cache` 中,buffer 就会被清空了,因为不需要保留 buffer 了,数据在 translog 里面已经持久化到磁盘去一份了。
5758

58-
重复上面的步骤,新的数据不断进入 buffer 和 translog,不断将 `buffer` 数据写入一个又一个新的 `segment file` 中去,每次 `refresh` 完 buffer 清空,translog保留。随着这个过程推进,translog 会变得越来越大。当 translog 达到一定长度的时候,就会触发 `commit` 操作。
59+
重复上面的步骤,新的数据不断进入 buffer 和 translog,不断将 `buffer` 数据写入一个又一个新的 `segment file` 中去,每次 `refresh` 完 buffer 清空,translog 保留。随着这个过程推进,translog 会变得越来越大。当 translog 达到一定长度的时候,就会触发 `commit` 操作。
5960

6061
commit 操作发生第一步,就是将 buffer 中现有数据 `refresh``os cache` 中去,清空 buffer。然后,将一个 `commit point` 写入磁盘文件,里面标识着这个 `commit point` 对应的所有 `segment file`,同时强行将 `os cache` 中目前所有的数据都 `fsync` 到磁盘文件中去。最后**清空** 现有 translog 日志文件,重启一个 translog,此时 commit 操作完成。
6162

@@ -67,14 +68,16 @@ translog 其实也是先写入 os cache 的,默认每隔 5 秒刷一次到磁
6768

6869
实际上你在这里,如果面试官没有问你 es 丢数据的问题,你可以在这里给面试官炫一把,你说,其实 es 第一是准实时的,数据写入 1 秒后可以搜索到;可能会丢失数据的。有 5 秒的数据,停留在 buffer、translog os cache、segment file os cache 中,而不在磁盘上,此时如果宕机,会导致 5 秒的**数据丢失**
6970

71+
**总结一下**,数据先写入内存 buffer,然后每隔 1s,将数据 refresh 到 os cache,到了 os cache 数据就能被搜索到(所以我们才说 es 从写入到能被搜索到,中间有 1s 的延迟)。每隔 5s,将数据写入 translog 文件(这样如果机器宕机,内存数据全没,最多会有 5s 的数据丢失),translog 大到一定程度,或者默认每隔 30mins,会触发 commit 操作,将缓冲区的数据都 flush 到 segment file 磁盘文件中。
72+
7073
> 数据写入 segment file 之后,同时就建立好了倒排索引。
7174
7275
### 删除/更新数据底层原理
7376
如果是删除操作,commit 的时候会生成一个 `.del` 文件,里面将某个 doc 标识为 `deleted` 状态,那么搜索的时候根据 `.del` 文件就知道这个 doc 是否被删除了。
7477

7578
如果是更新操作,就是将原来的 doc 标识为 `deleted` 状态,然后新写入一条数据。
7679

77-
buffer 每次 refresh 一次,就会产生一个 `segment file`,所以默认情况下是 1 秒钟一个 `segment file`,这样下来 `segment file` 会越来越多,此时会定期执行 merge。每次 merge 的时候,会将多个 `segment file` 合并成一个,同时这里会将标识为 `deleted` 的 doc 给**物理删除掉**,然后将新的 `segment file` 写入磁盘,这里会写一个 `commit point`,标识所有新的 `segment file`,然后打开 `segment file` 供搜索使用,同时删除旧的 `segment file`
80+
buffer refresh 一次,就会产生一个 `segment file`,所以默认情况下是 1 秒钟一个 `segment file`,这样下来 `segment file` 会越来越多,此时会定期执行 merge。每次 merge 的时候,会将多个 `segment file` 合并成一个,同时这里会将标识为 `deleted` 的 doc 给**物理删除掉**,然后将新的 `segment file` 写入磁盘,这里会写一个 `commit point`,标识所有新的 `segment file`,然后打开 `segment file` 供搜索使用,同时删除旧的 `segment file`
7881

7982
### 底层 lucene
8083
简单来说,lucene 就是一个 jar 包,里面包含了封装好的各种建立倒排索引的算法代码。我们用 Java 开发的时候,引入 lucene jar,然后基于 lucene 的 api 去开发就可以了。
@@ -121,4 +124,6 @@ buffer 每次 refresh 一次,就会产生一个 `segment file`,所以默认
121124
要注意倒排索引的两个重要细节:
122125

123126
- 倒排索引中的所有词项对应一个或多个文档;
124-
- 倒排索引中的词项**根据字典顺序升序排列**
127+
- 倒排索引中的词项**根据字典顺序升序排列**
128+
129+
> 上面只是一个简单的栗子,并没有严格按照字典顺序升序排列。

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /