Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit d0c763e

Browse files
committed
Tarjan's strongly conneted component algorithm added
1 parent f871910 commit d0c763e

File tree

2 files changed

+134
-1
lines changed

2 files changed

+134
-1
lines changed

‎AlgorithmCode/TarjanScc.java

Lines changed: 133 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,133 @@
1+
2+
/**
3+
* An implementation of Tarjan's Strongly Connected Components algorithm using an adjacency list.
4+
*
5+
* <p>Time complexity: O(V+E)
6+
*
7+
* @author William Fiset, william.alexandre.fiset@gmail.com
8+
*/
9+
10+
import static java.lang.Math.min;
11+
12+
import java.util.*;
13+
14+
public class TarjanScc {
15+
16+
private int n;
17+
private List<List<Integer>> graph;
18+
19+
private boolean solved;
20+
private int sccCount, id;
21+
private boolean[] onStack;
22+
private int[] ids, low;
23+
private Deque<Integer> stack;
24+
25+
private static final int UNVISITED = -1;
26+
27+
public TarjanScc(List<List<Integer>> graph) {
28+
if (graph == null) throw new IllegalArgumentException("Graph cannot be null.");
29+
n = graph.size();
30+
this.graph = graph;
31+
}
32+
33+
// Returns the number of strongly connected components in the graph.
34+
public int sccCount() {
35+
if (!solved) solve();
36+
return sccCount;
37+
}
38+
39+
// Get the connected components of this graph. If two indexes
40+
// have the same value then they're in the same SCC.
41+
public int[] getSccs() {
42+
if (!solved) solve();
43+
return low;
44+
}
45+
46+
public void solve() {
47+
if (solved) return;
48+
49+
ids = new int[n];
50+
low = new int[n];
51+
onStack = new boolean[n];
52+
stack = new ArrayDeque<>();
53+
Arrays.fill(ids, UNVISITED);
54+
55+
for (int i = 0; i < n; i++) if (ids[i] == UNVISITED) dfs(i);
56+
57+
solved = true;
58+
}
59+
60+
private void dfs(int at) {
61+
stack.push(at);
62+
onStack[at] = true;
63+
ids[at] = low[at] = id++;
64+
65+
for (int to : graph.get(at)) {
66+
if (ids[to] == UNVISITED) dfs(to);
67+
if (onStack[to]) low[at] = min(low[at], low[to]);
68+
}
69+
70+
// On recursive callback, if we're at the root node (start of SCC)
71+
// empty the seen stack until back to root.
72+
if (ids[at] == low[at]) {
73+
for (int node = stack.pop(); ; node = stack.pop()) {
74+
onStack[node] = false;
75+
low[node] = ids[at];
76+
if (node == at) break;
77+
}
78+
sccCount++;
79+
}
80+
}
81+
82+
// Initializes adjacency list with n nodes.
83+
public static List<List<Integer>> createGraph(int n) {
84+
List<List<Integer>> graph = new ArrayList<>(n);
85+
for (int i = 0; i < n; i++) graph.add(new ArrayList<>());
86+
return graph;
87+
}
88+
89+
// Adds a directed edge from node 'from' to node 'to'
90+
public static void addEdge(List<List<Integer>> graph, int from, int to) {
91+
graph.get(from).add(to);
92+
}
93+
94+
/* Example usage: */
95+
96+
public static void main(String[] arg) {
97+
int n = 8;
98+
List<List<Integer>> graph = createGraph(n);
99+
100+
addEdge(graph, 6, 0);
101+
addEdge(graph, 6, 2);
102+
addEdge(graph, 3, 4);
103+
addEdge(graph, 6, 4);
104+
addEdge(graph, 2, 0);
105+
addEdge(graph, 0, 1);
106+
addEdge(graph, 4, 5);
107+
addEdge(graph, 5, 6);
108+
addEdge(graph, 3, 7);
109+
addEdge(graph, 7, 5);
110+
addEdge(graph, 1, 2);
111+
addEdge(graph, 7, 3);
112+
addEdge(graph, 5, 0);
113+
114+
TarjanScc solver = new TarjanScc(graph);
115+
116+
int[] sccs = solver.getSccs();
117+
Map<Integer, List<Integer>> multimap = new HashMap<>();
118+
for (int i = 0; i < n; i++) {
119+
if (!multimap.containsKey(sccs[i])) multimap.put(sccs[i], new ArrayList<>());
120+
multimap.get(sccs[i]).add(i);
121+
}
122+
123+
// Prints:
124+
// Number of Strongly Connected Components: 3
125+
// Nodes: [0, 1, 2] form a Strongly Connected Component.
126+
// Nodes: [3, 7] form a Strongly Connected Component.
127+
// Nodes: [4, 5, 6] form a Strongly Connected Component.
128+
System.out.printf("Number of Strongly Connected Components: %d\n", solver.sccCount());
129+
for (List<Integer> scc : multimap.values()) {
130+
System.out.println("Nodes: " + scc + " form a Strongly Connected Component.");
131+
}
132+
}
133+
}

‎README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -157,7 +157,7 @@ In mathematics and computer science, an algorithm is a finite sequence of well-d
157157
- Bipartite Matching - DFS Manner
158158

159159
### Strongly Conneted Component - 강한 연결 요소
160-
- Tarjan's Algorithm - O(V+E)
160+
- [Tarjan's Algorithm](https://github.com/lemidia/Algorithm-and-Data-Structure/blob/master/AlgorithmCode/TarjanScc.java) - O(V+E)
161161

162162
- [Kosaraju's Algorithm](https://github.com/lemidia/Algorithm-and-Data-Structure/blob/master/AlgorithmCode/SCC_Kosaraju.java) - O(V+E)
163163

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /