Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit b40ad3e

Browse files
authored
Update README.md
1 parent dfabfc5 commit b40ad3e

File tree

1 file changed

+14
-14
lines changed

1 file changed

+14
-14
lines changed

‎README.md

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -20,13 +20,13 @@
2020
- [Contents](#contents)
2121
- [Machine Learning](#machine-learning)
2222
- [General Purpose Machine Learning](#general-purpose-machine-learning)
23+
- [Gradient Boosting](#gradient-boosting)
2324
- [Automated Machine Learning](#automated-machine-learning)
2425
- [Ensemble Methods](#ensemble-methods)
2526
- [Imbalanced Datasets](#imbalanced-datasets)
2627
- [Random Forests](#random-forests)
27-
- [Extreme Learning Machine](#extreme-learning-machine)
2828
- [Kernel Methods](#kernel-methods)
29-
- [Gradient Boosting](#gradient-boosting)
29+
- [Extreme Learning Machine](#extreme-learning-machine)
3030
- [Deep Learning](#deep-learning)
3131
- [PyTorch](#pytorch)
3232
- [TensorFlow](#tensorflow)
@@ -95,8 +95,16 @@
9595
* [pyGAM](https://github.com/dswah/pyGAM) - Generalized Additive Models in Python.
9696
* [causalml](https://github.com/uber/causalml) - Uplift modeling and causal inference with machine learning algorithms. <img height="20" src="img/sklearn_big.png" alt="sklearn">
9797

98+
### Gradient Boosting
99+
* [XGBoost](https://github.com/dmlc/xgboost) - Scalable, Portable, and Distributed Gradient Boosting. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
100+
* [LightGBM](https://github.com/Microsoft/LightGBM) - A fast, distributed, high-performance gradient boosting. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
101+
* [CatBoost](https://github.com/catboost/catboost) - An open-source gradient boosting on decision trees library. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
102+
* [ThunderGBM](https://github.com/Xtra-Computing/thundergbm) - Fast GBDTs and Random Forests on GPUs. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
103+
* [NGBoost](https://github.com/stanfordmlgroup/ngboost) - Natural Gradient Boosting for Probabilistic Prediction.
104+
* [TensorFlow Decision Forests](https://github.com/tensorflow/decision-forests) - A collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models in Keras. <img height="20" src="img/keras_big.png" alt="keras"> <img height="20" src="img/tf_big2.png" alt="TensorFlow">
105+
98106
### Automated Machine Learning
99-
* [auto-sklearn](https://github.com/automl/auto-sklearn) - An automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. <img height="20" src="img/sklearn_big.png" alt="sklearn">
107+
* [auto-sklearn](https://github.com/automl/auto-sklearn) - An AutoML toolkit and a drop-in replacement for a scikit-learn estimator. <img height="20" src="img/sklearn_big.png" alt="sklearn">
100108
* [Auto-PyTorch](https://github.com/automl/Auto-PyTorch) - Automatic architecture search and hyperparameter optimization for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
101109
* [AutoKeras](https://github.com/keras-team/autokeras) - AutoML library for deep learning. <img height="20" src="img/keras_big.png" alt="Keras compatible">
102110
* [AutoGluon](https://github.com/awslabs/autogluon) - AutoML for Image, Text, Tabular, Time-Series, and MultiModal Data.
@@ -118,10 +126,6 @@
118126
* [sklearn-random-bits-forest](https://github.com/tmadl/sklearn-random-bits-forest) - Wrapper of the Random Bits Forest program written by (Wang et al., 2016).<img height="20" src="img/sklearn_big.png" alt="sklearn">
119127
* [rgf_python](https://github.com/fukatani/rgf_python) - Python Wrapper of Regularized Greedy Forest. <img height="20" src="img/sklearn_big.png" alt="sklearn">
120128

121-
### Extreme Learning Machine
122-
* [Python Extreme Learning Machine (ELM)](https://github.com/acba/elm) - A machine learning technique used for classification/regression tasks.
123-
* [hpelm](https://github.com/akusok/hpelm) - High-performance implementation of Extreme Learning Machines (fast randomized neural networks). <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
124-
125129
### Kernel Methods
126130
* [pyFM](https://github.com/coreylynch/pyFM) - Factorization machines in python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
127131
* [fastFM](https://github.com/ibayer/fastFM) - A library for Factorization Machines. <img height="20" src="img/sklearn_big.png" alt="sklearn">
@@ -130,13 +134,9 @@
130134
* [scikit-rvm](https://github.com/JamesRitchie/scikit-rvm) - Relevance Vector Machine implementation using the scikit-learn API. <img height="20" src="img/sklearn_big.png" alt="sklearn">
131135
* [ThunderSVM](https://github.com/Xtra-Computing/thundersvm) - A fast SVM Library on GPUs and CPUs. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
132136

133-
### Gradient Boosting
134-
* [XGBoost](https://github.com/dmlc/xgboost) - Scalable, Portable, and Distributed Gradient Boosting. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
135-
* [LightGBM](https://github.com/Microsoft/LightGBM) - A fast, distributed, high-performance gradient boosting. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
136-
* [CatBoost](https://github.com/catboost/catboost) - An open-source gradient boosting on decision trees library. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
137-
* [ThunderGBM](https://github.com/Xtra-Computing/thundergbm) - Fast GBDTs and Random Forests on GPUs. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
138-
* [NGBoost](https://github.com/stanfordmlgroup/ngboost) - Natural Gradient Boosting for Probabilistic Prediction.
139-
* [TensorFlow Decision Forests](https://github.com/tensorflow/decision-forests) - A collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models in Keras. <img height="20" src="img/keras_big.png" alt="keras"> <img height="20" src="img/tf_big2.png" alt="TensorFlow">
137+
### Extreme Learning Machine
138+
* [Python Extreme Learning Machine (ELM)](https://github.com/acba/elm) - A machine learning technique used for classification/regression tasks.
139+
* [hpelm](https://github.com/akusok/hpelm) - High-performance implementation of Extreme Learning Machines (fast randomized neural networks). <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
140140

141141
## Deep Learning
142142

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /