Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Tried Kmeans algo, got poor performance on obvious clusters (screenshot attached) #983

Open
@Nomia

Description

Brief Intro

I generated different clusters with python numpy
image

then I trained in my Xcode program(code attached in the More Details section)
vectors are the points I generated from python numpy for 3 clusters
labels are [0,1,2]

finally, I got the result:

60 total vectors, print(label, index)
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
1 11
1 12
1 13
1 14
1 15
1 16
1 17
1 18
1 19
1 20
1 21
1 22
1 23
1 24
1 25
1 26
1 27
1 28
1 29
1 30
1 31
1 32
1 33
1 34
1 35
1 36
1 37
1 38
1 39
2 40
0 41
2 42
2 43
0 44
2 45
2 46
2 47
2 48
2 49
2 50
2 51
2 52
0 53
2 54
2 55
2 56
2 57
0 58
2 59

as you can see from the result, label 1 cluster hold most of the vectors, and the rest seems like random guesses

More Details

func testKmeans() {
 let clusterOne = [[18.188526006613863, 11.248261784580054], [10.977922184631586, 15.109012046596924], [5.452898113107155, 3.5321009807982096], [10.18536635911578, 13.862703624731203], [10.328957328435466, 12.537782900374987], [1.4189763353100684, 5.266359205174575], [9.067851641179294, 10.920729828409662], [10.368836624859934, 15.665231690024799], [2.145960771070766, 4.401557392504384], [2.7620911225735183, 14.920065055992431], [14.12720041718686, 3.468361932877836], [4.167420371109743, 15.894531551132244], [16.41574049710068, 17.549326964691048], [19.01838762281819, 6.618632167330248], [6.850688295269066, 0.8848921926920426], [10.391360018193515, 7.0647893204675], [5.564145939535507, 17.082249462545413], [18.697486709978435, 10.845389268062606], [9.944644191259359, 7.930633818473652], [13.554062994802381, 11.393168588934731]]
 let clusterTwo = [[98.22717216195596, 94.43311365626302], [95.96801168452608, 96.39703533410699], [107.25001265191436, 94.51954931160518], [96.71197635114106, 99.36012790381027], [97.05760533627782, 100.43590091710398], [107.29405539101856, 99.48442540590167], [100.24229465041242, 100.69277829864974], [104.02306613277689, 96.79355788788355], [102.07514033663578, 94.1786915163715], [104.16619176003175, 104.84321793930332], [107.95395690451934, 96.70324724184555], [106.07036600893042, 99.49082144608062], [93.45428443493724, 97.14765864686596], [103.84075072097382, 99.77036826997173], [103.80084391099508, 98.40957369095679], [93.79214518785558, 100.64095494475106], [98.04543573640187, 103.14245232979145], [101.40503319569623, 101.54303891277588], [100.97940805244447, 101.53228869326816], [91.46287923292982, 98.79682339657157]]
 let clusterThree = [[206.66786538454946, 199.1017021618947], [199.38694598772693, 196.8381957876811], [208.5302089809453, 202.86351250650603], [204.10039196509916, 206.8368777115382], [205.43443870343214, 196.6941598041279], [208.12689482387472, 203.11836105818477], [203.23593716528936, 199.21465204846663], [204.7865753112437, 203.7801225895648], [195.30354179620295, 207.66199316618227], [199.73939127272905, 209.14920751840256], [206.7571092925273, 198.82212296945562], [200.80520574403877, 203.20624053902793], [192.02336967359818, 200.33378494221515], [201.19365787431974, 191.9066861191232], [196.2502592069524, 208.9488333465134], [208.89698463042888, 200.69718685831506], [202.270617434823, 204.9654317320587], [195.50674902955151, 208.22877709245074], [197.95303741057813, 191.43455765780755], [202.00407100481, 204.1023751597576]]
 
 var vectors = [Vector]()
 for encoding in clusterOne {
 let vector = Vector(encoding)
 vectors.append(vector)
 }
 
 for encoding in clusterTwo {
 let vector = Vector(encoding)
 vectors.append(vector)
 }
 
 for encoding in clusterThree {
 let vector = Vector(encoding)
 vectors.append(vector)
 }
 // cluster all the face encodings
 var labels = [Int]();
 for label in 0...2 {
 labels.append(label)
 }
 let kmm = KMeans<Int>(labels: labels)
 let result = kmm.trainCenters(vectors, convergeDistance: 0.0001)
 print(vectors.count)
 for (i, label) in kmm.fit(vectors).enumerated() {
 print(label, i)
 }
}

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

      Relationships

      None yet

      Development

      No branches or pull requests

      Issue actions

        AltStyle によって変換されたページ (->オリジナル) /