Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit f067b78

Browse files
committed
update numpy tutorial notebook
1 parent 23424ed commit f067b78

File tree

3 files changed

+1085
-356
lines changed

3 files changed

+1085
-356
lines changed

‎.ipynb_checkpoints/understanding-numpy-checkpoint.ipynb

Lines changed: 333 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@
3333
},
3434
{
3535
"cell_type": "code",
36-
"execution_count": 52,
36+
"execution_count": 1,
3737
"metadata": {},
3838
"outputs": [],
3939
"source": [
@@ -45,7 +45,7 @@
4545
},
4646
{
4747
"cell_type": "code",
48-
"execution_count": 53,
48+
"execution_count": 2,
4949
"metadata": {},
5050
"outputs": [
5151
{
@@ -54,7 +54,7 @@
5454
"'1.15.3'"
5555
]
5656
},
57-
"execution_count": 53,
57+
"execution_count": 2,
5858
"metadata": {},
5959
"output_type": "execute_result"
6060
}
@@ -2893,6 +2893,329 @@
28932893
"Theta(-1.2), Theta(2.6)"
28942894
]
28952895
},
2896+
{
2897+
"cell_type": "markdown",
2898+
"metadata": {},
2899+
"source": [
2900+
"--------------------------\n",
2901+
"--------------------------\n",
2902+
"\n",
2903+
"## **Advanced NumPy**"
2904+
]
2905+
},
2906+
{
2907+
"cell_type": "code",
2908+
"execution_count": 6,
2909+
"metadata": {},
2910+
"outputs": [],
2911+
"source": [
2912+
"from IPython.display import Image\n",
2913+
"from IPython.core.display import display, HTML"
2914+
]
2915+
},
2916+
{
2917+
"cell_type": "code",
2918+
"execution_count": 18,
2919+
"metadata": {},
2920+
"outputs": [
2921+
{
2922+
"data": {
2923+
"text/html": [
2924+
"<img src=\"https://i.stack.imgur.com/p2PGi.png\"/>"
2925+
],
2926+
"text/plain": [
2927+
"<IPython.core.display.Image object>"
2928+
]
2929+
},
2930+
"execution_count": 18,
2931+
"metadata": {},
2932+
"output_type": "execute_result"
2933+
}
2934+
],
2935+
"source": [
2936+
"axis_visual = \"https://i.stack.imgur.com/p2PGi.png\"\n",
2937+
"Image(url=axis_visual)"
2938+
]
2939+
},
2940+
{
2941+
"cell_type": "code",
2942+
"execution_count": 19,
2943+
"metadata": {},
2944+
"outputs": [
2945+
{
2946+
"data": {
2947+
"text/html": [
2948+
"<img src=\"https://www.oreilly.com/library/view/elegant-scipy/9781491922927/assets/elsp_0105.png\"/>"
2949+
],
2950+
"text/plain": [
2951+
"<IPython.core.display.Image object>"
2952+
]
2953+
},
2954+
"execution_count": 19,
2955+
"metadata": {},
2956+
"output_type": "execute_result"
2957+
}
2958+
],
2959+
"source": [
2960+
"arr_visual = \"https://www.oreilly.com/library/view/elegant-scipy/9781491922927/assets/elsp_0105.png\"\n",
2961+
"Image(url=arr_visual)"
2962+
]
2963+
},
2964+
{
2965+
"cell_type": "markdown",
2966+
"metadata": {},
2967+
"source": [
2968+
"### **Computing statistics across axes**"
2969+
]
2970+
},
2971+
{
2972+
"cell_type": "code",
2973+
"execution_count": 8,
2974+
"metadata": {},
2975+
"outputs": [
2976+
{
2977+
"data": {
2978+
"text/plain": [
2979+
"array([[ 0, 1, 2, 3, 4, 5],\n",
2980+
" [ 6, 7, 8, 9, 10, 11],\n",
2981+
" [12, 13, 14, 15, 16, 17],\n",
2982+
" [18, 19, 20, 21, 22, 23],\n",
2983+
" [24, 25, 26, 27, 28, 29]])"
2984+
]
2985+
},
2986+
"execution_count": 8,
2987+
"metadata": {},
2988+
"output_type": "execute_result"
2989+
}
2990+
],
2991+
"source": [
2992+
"arr = np.arange(5 * 6).reshape(5, 6)\n",
2993+
"arr"
2994+
]
2995+
},
2996+
{
2997+
"cell_type": "code",
2998+
"execution_count": 13,
2999+
"metadata": {},
3000+
"outputs": [
3001+
{
3002+
"data": {
3003+
"text/plain": [
3004+
"array([[12., 13., 14., 15., 16., 17.]])"
3005+
]
3006+
},
3007+
"execution_count": 13,
3008+
"metadata": {},
3009+
"output_type": "execute_result"
3010+
}
3011+
],
3012+
"source": [
3013+
"arr.mean(axis=0, keepdims=True)"
3014+
]
3015+
},
3016+
{
3017+
"cell_type": "code",
3018+
"execution_count": 15,
3019+
"metadata": {},
3020+
"outputs": [],
3021+
"source": [
3022+
"# what would be the result for:\n",
3023+
"avg = arr.mean(axis=1, keepdims=True)\n",
3024+
"\n",
3025+
"# similarly, max, min, std, etc."
3026+
]
3027+
},
3028+
{
3029+
"cell_type": "markdown",
3030+
"metadata": {},
3031+
"source": [
3032+
"### **Broadcasting**"
3033+
]
3034+
},
3035+
{
3036+
"cell_type": "code",
3037+
"execution_count": 50,
3038+
"metadata": {},
3039+
"outputs": [
3040+
{
3041+
"data": {
3042+
"text/html": [
3043+
"<img src=\"https://jakevdp.github.io/PythonDataScienceHandbook/figures/02.05-broadcasting.png\" width=\"720\" height=\"480\"/>"
3044+
],
3045+
"text/plain": [
3046+
"<IPython.core.display.Image object>"
3047+
]
3048+
},
3049+
"execution_count": 50,
3050+
"metadata": {},
3051+
"output_type": "execute_result"
3052+
}
3053+
],
3054+
"source": [
3055+
"bcast_visual = \"https://jakevdp.github.io/PythonDataScienceHandbook/figures/02.05-broadcasting.png\"\n",
3056+
"Image(url=bcast_visual, width=720, height=480)"
3057+
]
3058+
},
3059+
{
3060+
"cell_type": "markdown",
3061+
"metadata": {},
3062+
"source": [
3063+
"### **RandomState**\n",
3064+
"\n",
3065+
"For reproducing the results, fix the seed:\n",
3066+
"\n",
3067+
" A fixed seed and a fixed series of calls to 'RandomState' methods using the same parameters will always produce the same results up to roundoff error except when the values were incorrect."
3068+
]
3069+
},
3070+
{
3071+
"cell_type": "code",
3072+
"execution_count": 72,
3073+
"metadata": {},
3074+
"outputs": [
3075+
{
3076+
"data": {
3077+
"text/plain": [
3078+
"array([[2, 3, 1, 3, 3, 0],\n",
3079+
" [1, 1, 1, 3, 2, 1],\n",
3080+
" [4, 3, 0, 2, 4, 4]])"
3081+
]
3082+
},
3083+
"execution_count": 72,
3084+
"metadata": {},
3085+
"output_type": "execute_result"
3086+
}
3087+
],
3088+
"source": [
3089+
"rng = np.random.RandomState(seed=42)\n",
3090+
"data = rng.randint(-1, 5, (3, 6))\n",
3091+
"data"
3092+
]
3093+
},
3094+
{
3095+
"cell_type": "markdown",
3096+
"metadata": {},
3097+
"source": [
3098+
"### **Sampling from Distributions**"
3099+
]
3100+
},
3101+
{
3102+
"cell_type": "code",
3103+
"execution_count": 75,
3104+
"metadata": {},
3105+
"outputs": [
3106+
{
3107+
"data": {
3108+
"text/plain": [
3109+
"array([[[ 0.49671415, -0.1382643 ],\n",
3110+
" [ 0.64768854, 1.52302986],\n",
3111+
" [-0.23415337, -0.23413696],\n",
3112+
" [ 1.57921282, 0.76743473]],\n",
3113+
"\n",
3114+
" [[-0.46947439, 0.54256004],\n",
3115+
" [-0.46341769, -0.46572975],\n",
3116+
" [ 0.24196227, -1.91328024],\n",
3117+
" [-1.72491783, -0.56228753]],\n",
3118+
"\n",
3119+
" [[-1.01283112, 0.31424733],\n",
3120+
" [-0.90802408, -1.4123037 ],\n",
3121+
" [ 1.46564877, -0.2257763 ],\n",
3122+
" [ 0.0675282 , -1.42474819]]])"
3123+
]
3124+
},
3125+
"execution_count": 75,
3126+
"metadata": {},
3127+
"output_type": "execute_result"
3128+
}
3129+
],
3130+
"source": [
3131+
"# for reproducibility\n",
3132+
"rng = np.random.RandomState(seed=42)\n",
3133+
"\n",
3134+
"std_normal_dist = rng.standard_normal(size=(3, 4, 2))\n",
3135+
"std_normal_dist"
3136+
]
3137+
},
3138+
{
3139+
"cell_type": "code",
3140+
"execution_count": 78,
3141+
"metadata": {},
3142+
"outputs": [
3143+
{
3144+
"data": {
3145+
"text/plain": [
3146+
"array([[[ 0.49671415, -0.1382643 ],\n",
3147+
" [ 0.64768854, 1.52302986],\n",
3148+
" [-0.23415337, -0.23413696],\n",
3149+
" [ 1.57921282, 0.76743473]],\n",
3150+
"\n",
3151+
" [[-0.46947439, 0.54256004],\n",
3152+
" [-0.46341769, -0.46572975],\n",
3153+
" [ 0.24196227, -1.91328024],\n",
3154+
" [-1.72491783, -0.56228753]],\n",
3155+
"\n",
3156+
" [[-1.01283112, 0.31424733],\n",
3157+
" [-0.90802408, -1.4123037 ],\n",
3158+
" [ 1.46564877, -0.2257763 ],\n",
3159+
" [ 0.0675282 , -1.42474819]]])"
3160+
]
3161+
},
3162+
"execution_count": 78,
3163+
"metadata": {},
3164+
"output_type": "execute_result"
3165+
}
3166+
],
3167+
"source": [
3168+
"# if reproducibility matters ...\n",
3169+
"rng = np.random.RandomState(seed=42)\n",
3170+
"\n",
3171+
"# an array of 10 points randomly sampled from a normal distribution\n",
3172+
"# loc=mean, scale=std deviation\n",
3173+
"rng.normal(loc=0.0, scale=1.0, size=(3, 4, 2))"
3174+
]
3175+
},
3176+
{
3177+
"cell_type": "code",
3178+
"execution_count": 77,
3179+
"metadata": {},
3180+
"outputs": [
3181+
{
3182+
"data": {
3183+
"text/plain": [
3184+
"array([[[0.37454012, 0.95071431],\n",
3185+
" [0.73199394, 0.59865848],\n",
3186+
" [0.15601864, 0.15599452],\n",
3187+
" [0.05808361, 0.86617615]],\n",
3188+
"\n",
3189+
" [[0.60111501, 0.70807258],\n",
3190+
" [0.02058449, 0.96990985],\n",
3191+
" [0.83244264, 0.21233911],\n",
3192+
" [0.18182497, 0.18340451]],\n",
3193+
"\n",
3194+
" [[0.30424224, 0.52475643],\n",
3195+
" [0.43194502, 0.29122914],\n",
3196+
" [0.61185289, 0.13949386],\n",
3197+
" [0.29214465, 0.36636184]]])"
3198+
]
3199+
},
3200+
"execution_count": 77,
3201+
"metadata": {},
3202+
"output_type": "execute_result"
3203+
}
3204+
],
3205+
"source": [
3206+
"# uniform distribution\n",
3207+
"rng = np.random.RandomState(seed=42)\n",
3208+
"\n",
3209+
"rng.uniform(low=0, high=1.0, size=(3, 4, 2))"
3210+
]
3211+
},
3212+
{
3213+
"cell_type": "code",
3214+
"execution_count": null,
3215+
"metadata": {},
3216+
"outputs": [],
3217+
"source": []
3218+
},
28963219
{
28973220
"cell_type": "markdown",
28983221
"metadata": {},
@@ -2906,6 +3229,13 @@
29063229
"- https://docs.scipy.org/doc/numpy/reference/\n",
29073230
"- Your own imagination & dexterity!"
29083231
]
3232+
},
3233+
{
3234+
"cell_type": "code",
3235+
"execution_count": null,
3236+
"metadata": {},
3237+
"outputs": [],
3238+
"source": []
29093239
}
29103240
],
29113241
"metadata": {

‎persist/random-array.npy

0 Bytes
Binary file not shown.

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /