Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 1549d8b

Browse files
Add files via upload
1 parent 7532fdd commit 1549d8b

File tree

1 file changed

+369
-0
lines changed

1 file changed

+369
-0
lines changed

‎Artificial Neural Networks.ipynb

Lines changed: 369 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,369 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 1,
6+
"metadata": {},
7+
"outputs": [
8+
{
9+
"name": "stderr",
10+
"output_type": "stream",
11+
"text": [
12+
"Using TensorFlow backend.\n"
13+
]
14+
}
15+
],
16+
"source": [
17+
"# first neural network with keras tutorial\n",
18+
"from numpy import loadtxt\n",
19+
"import pandas as pd\n",
20+
"from keras.models import Sequential\n",
21+
"from keras.layers import Dense"
22+
]
23+
},
24+
{
25+
"cell_type": "code",
26+
"execution_count": 2,
27+
"metadata": {},
28+
"outputs": [
29+
{
30+
"data": {
31+
"text/html": [
32+
"<div>\n",
33+
"<style scoped>\n",
34+
" .dataframe tbody tr th:only-of-type {\n",
35+
" vertical-align: middle;\n",
36+
" }\n",
37+
"\n",
38+
" .dataframe tbody tr th {\n",
39+
" vertical-align: top;\n",
40+
" }\n",
41+
"\n",
42+
" .dataframe thead th {\n",
43+
" text-align: right;\n",
44+
" }\n",
45+
"</style>\n",
46+
"<table border=\"1\" class=\"dataframe\">\n",
47+
" <thead>\n",
48+
" <tr style=\"text-align: right;\">\n",
49+
" <th></th>\n",
50+
" <th>Pregnancies</th>\n",
51+
" <th>Glucose</th>\n",
52+
" <th>BloodPressure</th>\n",
53+
" <th>SkinThickness</th>\n",
54+
" <th>Insulin</th>\n",
55+
" <th>BMI</th>\n",
56+
" <th>DiabetesPedigreeFunction</th>\n",
57+
" <th>Age</th>\n",
58+
" <th>Outcome</th>\n",
59+
" </tr>\n",
60+
" </thead>\n",
61+
" <tbody>\n",
62+
" <tr>\n",
63+
" <th>0</th>\n",
64+
" <td>6</td>\n",
65+
" <td>148</td>\n",
66+
" <td>72</td>\n",
67+
" <td>35</td>\n",
68+
" <td>0</td>\n",
69+
" <td>33.6</td>\n",
70+
" <td>0.627</td>\n",
71+
" <td>50</td>\n",
72+
" <td>1</td>\n",
73+
" </tr>\n",
74+
" <tr>\n",
75+
" <th>1</th>\n",
76+
" <td>1</td>\n",
77+
" <td>85</td>\n",
78+
" <td>66</td>\n",
79+
" <td>29</td>\n",
80+
" <td>0</td>\n",
81+
" <td>26.6</td>\n",
82+
" <td>0.351</td>\n",
83+
" <td>31</td>\n",
84+
" <td>0</td>\n",
85+
" </tr>\n",
86+
" <tr>\n",
87+
" <th>2</th>\n",
88+
" <td>8</td>\n",
89+
" <td>183</td>\n",
90+
" <td>64</td>\n",
91+
" <td>0</td>\n",
92+
" <td>0</td>\n",
93+
" <td>23.3</td>\n",
94+
" <td>0.672</td>\n",
95+
" <td>32</td>\n",
96+
" <td>1</td>\n",
97+
" </tr>\n",
98+
" <tr>\n",
99+
" <th>3</th>\n",
100+
" <td>1</td>\n",
101+
" <td>89</td>\n",
102+
" <td>66</td>\n",
103+
" <td>23</td>\n",
104+
" <td>94</td>\n",
105+
" <td>28.1</td>\n",
106+
" <td>0.167</td>\n",
107+
" <td>21</td>\n",
108+
" <td>0</td>\n",
109+
" </tr>\n",
110+
" <tr>\n",
111+
" <th>4</th>\n",
112+
" <td>0</td>\n",
113+
" <td>137</td>\n",
114+
" <td>40</td>\n",
115+
" <td>35</td>\n",
116+
" <td>168</td>\n",
117+
" <td>43.1</td>\n",
118+
" <td>2.288</td>\n",
119+
" <td>33</td>\n",
120+
" <td>1</td>\n",
121+
" </tr>\n",
122+
" <tr>\n",
123+
" <th>...</th>\n",
124+
" <td>...</td>\n",
125+
" <td>...</td>\n",
126+
" <td>...</td>\n",
127+
" <td>...</td>\n",
128+
" <td>...</td>\n",
129+
" <td>...</td>\n",
130+
" <td>...</td>\n",
131+
" <td>...</td>\n",
132+
" <td>...</td>\n",
133+
" </tr>\n",
134+
" <tr>\n",
135+
" <th>763</th>\n",
136+
" <td>10</td>\n",
137+
" <td>101</td>\n",
138+
" <td>76</td>\n",
139+
" <td>48</td>\n",
140+
" <td>180</td>\n",
141+
" <td>32.9</td>\n",
142+
" <td>0.171</td>\n",
143+
" <td>63</td>\n",
144+
" <td>0</td>\n",
145+
" </tr>\n",
146+
" <tr>\n",
147+
" <th>764</th>\n",
148+
" <td>2</td>\n",
149+
" <td>122</td>\n",
150+
" <td>70</td>\n",
151+
" <td>27</td>\n",
152+
" <td>0</td>\n",
153+
" <td>36.8</td>\n",
154+
" <td>0.340</td>\n",
155+
" <td>27</td>\n",
156+
" <td>0</td>\n",
157+
" </tr>\n",
158+
" <tr>\n",
159+
" <th>765</th>\n",
160+
" <td>5</td>\n",
161+
" <td>121</td>\n",
162+
" <td>72</td>\n",
163+
" <td>23</td>\n",
164+
" <td>112</td>\n",
165+
" <td>26.2</td>\n",
166+
" <td>0.245</td>\n",
167+
" <td>30</td>\n",
168+
" <td>0</td>\n",
169+
" </tr>\n",
170+
" <tr>\n",
171+
" <th>766</th>\n",
172+
" <td>1</td>\n",
173+
" <td>126</td>\n",
174+
" <td>60</td>\n",
175+
" <td>0</td>\n",
176+
" <td>0</td>\n",
177+
" <td>30.1</td>\n",
178+
" <td>0.349</td>\n",
179+
" <td>47</td>\n",
180+
" <td>1</td>\n",
181+
" </tr>\n",
182+
" <tr>\n",
183+
" <th>767</th>\n",
184+
" <td>1</td>\n",
185+
" <td>93</td>\n",
186+
" <td>70</td>\n",
187+
" <td>31</td>\n",
188+
" <td>0</td>\n",
189+
" <td>30.4</td>\n",
190+
" <td>0.315</td>\n",
191+
" <td>23</td>\n",
192+
" <td>0</td>\n",
193+
" </tr>\n",
194+
" </tbody>\n",
195+
"</table>\n",
196+
"<p>768 rows ×ばつ 9 columns</p>\n",
197+
"</div>"
198+
],
199+
"text/plain": [
200+
" Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n",
201+
"0 6 148 72 35 0 33.6 \n",
202+
"1 1 85 66 29 0 26.6 \n",
203+
"2 8 183 64 0 0 23.3 \n",
204+
"3 1 89 66 23 94 28.1 \n",
205+
"4 0 137 40 35 168 43.1 \n",
206+
".. ... ... ... ... ... ... \n",
207+
"763 10 101 76 48 180 32.9 \n",
208+
"764 2 122 70 27 0 36.8 \n",
209+
"765 5 121 72 23 112 26.2 \n",
210+
"766 1 126 60 0 0 30.1 \n",
211+
"767 1 93 70 31 0 30.4 \n",
212+
"\n",
213+
" DiabetesPedigreeFunction Age Outcome \n",
214+
"0 0.627 50 1 \n",
215+
"1 0.351 31 0 \n",
216+
"2 0.672 32 1 \n",
217+
"3 0.167 21 0 \n",
218+
"4 2.288 33 1 \n",
219+
".. ... ... ... \n",
220+
"763 0.171 63 0 \n",
221+
"764 0.340 27 0 \n",
222+
"765 0.245 30 0 \n",
223+
"766 0.349 47 1 \n",
224+
"767 0.315 23 0 \n",
225+
"\n",
226+
"[768 rows x 9 columns]"
227+
]
228+
},
229+
"execution_count": 2,
230+
"metadata": {},
231+
"output_type": "execute_result"
232+
}
233+
],
234+
"source": [
235+
"# load the dataset\n",
236+
"dataset = pd.read_csv('~/Downloads/Data Science/data set/Diabetes.csv')\n",
237+
"dataset"
238+
]
239+
},
240+
{
241+
"cell_type": "code",
242+
"execution_count": 3,
243+
"metadata": {},
244+
"outputs": [],
245+
"source": [
246+
"# split into input (X) and output (y) variables\n",
247+
"X = dataset.iloc[:,0:8]\n",
248+
"y = dataset.iloc[:,8]"
249+
]
250+
},
251+
{
252+
"cell_type": "code",
253+
"execution_count": 4,
254+
"metadata": {},
255+
"outputs": [],
256+
"source": [
257+
"# make keras model\n",
258+
"model = Sequential()\n",
259+
"model.add(Dense(12, input_dim=8, activation='relu'))\n",
260+
"model.add(Dense(8, activation='relu'))\n",
261+
"model.add(Dense(1, activation='sigmoid'))"
262+
]
263+
},
264+
{
265+
"cell_type": "code",
266+
"execution_count": 5,
267+
"metadata": {},
268+
"outputs": [],
269+
"source": [
270+
"# compile keras model\n",
271+
"model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])"
272+
]
273+
},
274+
{
275+
"cell_type": "code",
276+
"execution_count": 6,
277+
"metadata": {},
278+
"outputs": [
279+
{
280+
"data": {
281+
"text/plain": [
282+
"<keras.callbacks.callbacks.History at 0x1046d5c10>"
283+
]
284+
},
285+
"execution_count": 6,
286+
"metadata": {},
287+
"output_type": "execute_result"
288+
}
289+
],
290+
"source": [
291+
"# fit model\n",
292+
"model.fit(X, y, epochs=150, batch_size=10,verbose=0)"
293+
]
294+
},
295+
{
296+
"cell_type": "code",
297+
"execution_count": 7,
298+
"metadata": {},
299+
"outputs": [
300+
{
301+
"name": "stdout",
302+
"output_type": "stream",
303+
"text": [
304+
"Accuracy: 77.86\n"
305+
]
306+
}
307+
],
308+
"source": [
309+
"# evaluate the model\n",
310+
"_, accuracy = model.evaluate(X, y,verbose=0)\n",
311+
"print('Accuracy: %.2f' % (accuracy*100))"
312+
]
313+
},
314+
{
315+
"cell_type": "code",
316+
"execution_count": 8,
317+
"metadata": {},
318+
"outputs": [],
319+
"source": [
320+
"# make class predictions\n",
321+
"predictions = model.predict_classes(X)"
322+
]
323+
},
324+
{
325+
"cell_type": "code",
326+
"execution_count": 9,
327+
"metadata": {},
328+
"outputs": [
329+
{
330+
"name": "stdout",
331+
"output_type": "stream",
332+
"text": [
333+
"[6.0, 148.0, 72.0, 35.0, 0.0, 33.6, 0.627, 50.0] => 1 (expected 1)\n",
334+
"[1.0, 85.0, 66.0, 29.0, 0.0, 26.6, 0.35100000000000003, 31.0] => 0 (expected 0)\n",
335+
"[8.0, 183.0, 64.0, 0.0, 0.0, 23.3, 0.672, 32.0] => 1 (expected 1)\n",
336+
"[1.0, 89.0, 66.0, 23.0, 94.0, 28.1, 0.16699999999999998, 21.0] => 0 (expected 0)\n",
337+
"[0.0, 137.0, 40.0, 35.0, 168.0, 43.1, 2.2880000000000003, 33.0] => 1 (expected 1)\n"
338+
]
339+
}
340+
],
341+
"source": [
342+
"# summary the first 5 cases\n",
343+
"for i in range(5):\n",
344+
" print('%s => %d (expected %d)' % (X.iloc[i].tolist(), predictions[i], y.iloc[i]))"
345+
]
346+
}
347+
],
348+
"metadata": {
349+
"kernelspec": {
350+
"display_name": "Python 3",
351+
"language": "python",
352+
"name": "python3"
353+
},
354+
"language_info": {
355+
"codemirror_mode": {
356+
"name": "ipython",
357+
"version": 3
358+
},
359+
"file_extension": ".py",
360+
"mimetype": "text/x-python",
361+
"name": "python",
362+
"nbconvert_exporter": "python",
363+
"pygments_lexer": "ipython3",
364+
"version": "3.7.7"
365+
}
366+
},
367+
"nbformat": 4,
368+
"nbformat_minor": 4
369+
}

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /