Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Transformer2DModel onnx convertation problems #12208

Open
@Voveka98

Description

Hi! I am trying to convert Transformer2DModel to onnx and cannot solve some problems.
I am trying to export UNet model with next architecture

Transformer2DModel(
 (pos_embed): PatchEmbed(
 (proj): Conv2d(96, 1584, kernel_size=(2, 2), stride=(2, 2))
 )
 (transformer_blocks): ModuleList(
 (0-23): 24 x BasicTransformerBlock(
 (norm1): LayerNorm((1584,), eps=1e-06, elementwise_affine=False)
 (attn1): Attention(
 (to_q): Linear(in_features=1584, out_features=1584, bias=True)
 (to_k): Linear(in_features=1584, out_features=1584, bias=True)
 (to_v): Linear(in_features=1584, out_features=1584, bias=True)
 (to_out): ModuleList(
 (0): Linear(in_features=1584, out_features=1584, bias=True)
 (1): Dropout(p=0.0, inplace=False)
 )
 )
 (norm2): LayerNorm((1584,), eps=1e-06, elementwise_affine=False)
 (ff): FeedForward(
 (net): ModuleList(
 (0): GELU(
 (proj): Linear(in_features=1584, out_features=6336, bias=True)
 )
 (1): Dropout(p=0.0, inplace=False)
 (2): Linear(in_features=6336, out_features=1584, bias=True)
 )
 )
 )
 )
 (norm_out): LayerNorm((1584,), eps=1e-06, elementwise_affine=False)
 (proj_out): Linear(in_features=1584, out_features=128, bias=True)
 (adaln_single): AdaLayerNormSingleFlow(
 (emb): PixArtAlphaCombinedFlowEmbeddings(
 (timestep_embedder): TimestepEmbedding(
 (linear_1): Linear(in_features=512, out_features=1584, bias=True)
 (act): SiLU()
 (linear_2): Linear(in_features=1584, out_features=1584, bias=True)
 )
 )
 (silu): SiLU()
 (linear): Linear(in_features=1584, out_features=9504, bias=True)
 )
)

As as input for my model i use next inputs with shapes:
hidden_states -> (B, 96, Height, Width)
timestep -> (B)
resolution -> (B, 2)
aspect_ratio -> (B, 1)

In python version resolution and aspect ratio are parts of added_cond_kwargs, but since onnx doesn't support dicts i wrote a wrapper that

import torch
import torch.nn as nn
class Transformer2DWrapper(nn.Module):
 def __init__(self, model):
 super().__init__()
 self.model = model
 
 def forward(
 self,
 hidden_states: torch.Tensor,
 timestep: torch.Tensor,
 resolution: torch.Tensor,
 aspect_ratio: torch.Tensor,
 ):
 timestep = timestep.float()
 
 added_cond_kwargs = {
 "resolution": resolution,
 "aspect_ratio": aspect_ratio,
 }
 
 out = self.model(
 hidden_states=hidden_states,
 timestep=timestep,
 added_cond_kwargs=added_cond_kwargs,
 return_dict=False,
 )
 return out[0] # sample tensor

I export to onnx with torch.onnx.export

wrapper = Transformer2DWrapper(unet_model)
torch.onnx.export(
 wrapper,
 dummy_inputs,
 "unet_converted/model.onnx",
 input_names=["hidden_states", "timestep", "resolution", "aspect_ratio"],
 output_names=["out_sample"],
 dynamic_axes={
 "hidden_states": {0: "batch", 2: "height", 3: "width"},
 "timestep": {0: "batch"},
 "resolution": {0: "batch"},
 "aspect_ratio": {0: "batch"},
 "out_sample": {0: "batch", 2: "height", 3: "width"},
 },
 opset_version=17, 
)

But after loading onnx version there is error with squeeze operation

Fail: [ONNXRuntimeError] : 1 : FAIL : Load model from unet_converted/model.onnx failed:Node (/model/transformer_blocks.0/If) Op (If) [TypeInferenceError] Graph attribute inferencing failed: Node (/model/transformer_blocks.0/Squeeze) Op (Squeeze) [ShapeInferenceError] Dimension of input 1 must be 1 instead of 256

Can you please help with convertation?
Versions:
diffusers==0.27.2
torch==2.2.0+cu118

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

      Relationships

      None yet

      Development

      No branches or pull requests

      Issue actions

        AltStyle によって変換されたページ (->オリジナル) /