Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit a18ee09

Browse files
chore: update lc problems (doocs#1766)
1 parent db3e63c commit a18ee09

File tree

15 files changed

+186
-146
lines changed

15 files changed

+186
-146
lines changed

‎.github/workflows/sync.yml‎

Lines changed: 26 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,26 @@
1+
name: Sync
2+
3+
on:
4+
push:
5+
branches: [ main ]
6+
7+
jobs:
8+
sync:
9+
runs-on: ubuntu-latest
10+
if: github.repository == 'doocs/leetcode'
11+
steps:
12+
- name: Sync to gitee.com
13+
uses: wearerequired/git-mirror-action@master
14+
env:
15+
SSH_PRIVATE_KEY: ${{ secrets.RSA_PRIVATE_KEY }}
16+
with:
17+
source-repo: git@github.com:doocs/leetcode.git
18+
destination-repo: git@gitee.com:Doocs/leetcode.git
19+
20+
- name: Build Gitee Pages
21+
uses: yanglbme/gitee-pages-action@main
22+
with:
23+
gitee-username: yanglbme
24+
gitee-password: ${{ secrets.GITEE_PASSWORD }}
25+
gitee-repo: doocs/leetcode
26+
branch: main

‎solution/2800-2899/2877.Create a DataFrame from List/README.md‎

Lines changed: 10 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,30 +1,31 @@
1-
# [2877. Create a DataFrame from List](https://leetcode.cn/problems/create-a-dataframe-from-list)
1+
# [2877. 从表中创建 DataFrame](https://leetcode.cn/problems/create-a-dataframe-from-list)
22

33
[English Version](/solution/2800-2899/2877.Create%20a%20DataFrame%20from%20List/README_EN.md)
44

55
## 题目描述
66

77
<!-- 这里写题目描述 -->
88

9-
<p>Write a solution to <strong>create</strong> a DataFrame from a 2D list called <code>student_data</code>. This 2D list contains the IDs and ages of some students.</p>
9+
<p>编写一个解决方案,从名为 &nbsp;<code>student_data</code>&nbsp;的二维列表&nbsp;<b>创建 </b>一个 DataFrame 。这个二维列表包含一些学生的 ID 和年龄信息。</p>
1010

11-
<p>The DataFrame should have two columns, <code>student_id</code> and <code>age</code>, and be in the same order as the original 2D list.</p>
11+
<p>DataFrame 应该有两列,&nbsp;<code>student_id</code>&nbsp;&nbsp;<code>age</code>,并且与原始二维列表的顺序相同。</p>
1212

13-
<p>The result format is in the following example.</p>
13+
<p>返回结果格式如下示例所示。</p>
1414

1515
<p>&nbsp;</p>
16-
<p><strong class="example">Example 1:</strong></p>
16+
17+
<p><strong class="example">示例 1:</strong></p>
1718

1819
<pre>
19-
<strong>Input:
20+
<strong>输入:
2021
</strong>student_data:<strong>
2122
</strong><code>[
2223
[1, 15],
2324
[2, 11],
2425
[3, 11],
2526
[4, 20]
2627
]</code>
27-
<strong>Output:</strong>
28+
<b>输出:</b>
2829
+------------+-----+
2930
| student_id | age |
3031
+------------+-----+
@@ -33,8 +34,8 @@
3334
| 3 | 11 |
3435
| 4 | 20 |
3536
+------------+-----+
36-
<strong>Explanation:</strong>
37-
A DataFrame was created on top of student_data, with two columns named <code>student_id</code> and <code>age</code>.
37+
<b>解释:</b>
38+
student_data 上创建了一个 DataFrame,包含 student_idage 两列。
3839
</pre>
3940

4041
## 解法

‎solution/2800-2899/2881.Create a New Column/README.md‎

Lines changed: 10 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# [2881. Create a New Column](https://leetcode.cn/problems/create-a-new-column)
1+
# [2881. 创建新列](https://leetcode.cn/problems/create-a-new-column)
22

33
[English Version](/solution/2800-2899/2881.Create%20a%20New%20Column/README_EN.md)
44

@@ -16,17 +16,18 @@ DataFrame <code>employees</code>
1616
+-------------+--------+
1717
</pre>
1818

19-
<p>A&nbsp;company plans to provide its employees with a bonus.</p>
19+
<p>一家公司计划为员工提供奖金。</p>
2020

21-
<p>Write a solution to create a new column name <code>bonus</code> that contains the <strong>doubled values</strong> of the <code>salary</code> column.</p>
21+
<p>编写一个解决方案,创建一个名为&nbsp;<code>bonus</code>&nbsp;的新列,其中包含&nbsp;<code>salary</code>&nbsp;值的&nbsp;<strong>两倍</strong>。</p>
2222

23-
<p>The result format is in the following example.</p>
23+
<p>返回结果格式如下示例所示。</p>
2424

2525
<p>&nbsp;</p>
26-
<p><strong class="example">Example 1:</strong></p>
26+
27+
<p><b>示例 1:</b></p>
2728

2829
<pre>
29-
<strong>Input:</strong>
30+
<b>输入:</b>
3031
DataFrame employees
3132
+---------+--------+
3233
| name | salary |
@@ -38,7 +39,7 @@ DataFrame employees
3839
| Finn | 74576 |
3940
| Thomas | 24433 |
4041
+---------+--------+
41-
<strong>Output:</strong>
42+
<b>输出:</b>
4243
+---------+--------+--------+
4344
| name | salary | bonus |
4445
+---------+--------+--------+
@@ -49,8 +50,8 @@ DataFrame employees
4950
| Finn | 74576 | 149152 |
5051
| Thomas | 24433 | 48866 |
5152
+---------+--------+--------+
52-
<strong>Explanation:</strong>
53-
A new column bonus is created by doubling the value in the column salary.</pre>
53+
<b>解释:</b>
54+
通过将salary列中的值加倍创建了一个新的bonus列。</pre>
5455

5556
## 解法
5657

‎solution/2800-2899/2882.Drop Duplicate Rows/README.md‎

Lines changed: 11 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# [2882. Drop Duplicate Rows](https://leetcode.cn/problems/drop-duplicate-rows)
1+
# [2882. 删去重复的行](https://leetcode.cn/problems/drop-duplicate-rows)
22

33
[English Version](/solution/2800-2899/2882.Drop%20Duplicate%20Rows/README_EN.md)
44

@@ -17,16 +17,18 @@ DataFrame customers
1717
+-------------+--------+
1818
</pre>
1919

20-
<p>There are some duplicate rows in the DataFrame based on the <code>email</code> column.</p>
20+
<p>DataFrame 中基于&nbsp;<code>email</code>&nbsp;列存在一些重复行。</p>
2121

22-
<p>Write a solution to remove these duplicate rows and keep only the <strong>first</strong> occurrence.</p>
22+
<p>编写一个解决方案,删除这些重复行,仅保留第一次出现的行。</p>
2323

24-
<p>The result format is in the following example.</p>
24+
<p>返回结果格式如下例所示。</p>
2525

2626
<p>&nbsp;</p>
27+
28+
<p><strong>示例 1:</strong></p>
29+
2730
<pre>
28-
<strong class="example">Example 1:</strong>
29-
<strong>Input:</strong>
31+
<b>输入:</b>
3032
+-------------+---------+---------------------+
3133
| customer_id | name | email |
3234
+-------------+---------+---------------------+
@@ -37,7 +39,7 @@ DataFrame customers
3739
| 5 | Finn | john@example.com |
3840
| 6 | Violet | alice@example.com |
3941
+-------------+---------+---------------------+
40-
<strong>Output: </strong>
42+
<b>输出:</b>
4143
+-------------+---------+---------------------+
4244
| customer_id | name | email |
4345
+-------------+---------+---------------------+
@@ -47,8 +49,8 @@ DataFrame customers
4749
| 4 | Alice | john@example.com |
4850
| 6 | Violet | alice@example.com |
4951
+-------------+---------+---------------------+
50-
<strong>Explanation:</strong>
51-
Alic (customer_id = 4) and Finn (customer_id = 5) both use john@example.com, so only the first occurrence of this email is retained.
52+
<b>解释:</b>
53+
Alice (customer_id = 4) Finn (customer_id = 5) 都使用 john@example.com,因此只保留该邮箱地址的第一次出现。
5254
</pre>
5355

5456
## 解法

‎solution/2800-2899/2883.Drop Missing Data/README.md‎

Lines changed: 10 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# [2883. Drop Missing Data](https://leetcode.cn/problems/drop-missing-data)
1+
# [2883. 删去丢失的数据](https://leetcode.cn/problems/drop-missing-data)
22

33
[English Version](/solution/2800-2899/2883.Drop%20Missing%20Data/README_EN.md)
44

@@ -17,17 +17,18 @@ DataFrame students
1717
+-------------+--------+
1818
</pre>
1919

20-
<p>There are some rows having missing values in the <code>name</code> column.</p>
20+
<p><code>name</code> 列里有一些具有缺失值的行。</p>
2121

22-
<p>Write a solution to remove the rows with missing values.</p>
22+
<p>编写一个解决方案,删除具有缺失值的行。</p>
2323

24-
<p>The result format is in the following example.</p>
24+
<p>返回结果格式如下示例所示。</p>
2525

2626
<p>&nbsp;</p>
27-
<p><strong class="example">Example 1:</strong></p>
27+
28+
<p><b>示例 1:</b></p>
2829

2930
<pre>
30-
<strong>Input:
31+
<strong>输入:
3132
</strong>+------------+-------+-----+
3233
| student_id | name | age |
3334
+------------+-------+-----+
@@ -36,15 +37,15 @@ DataFrame students
3637
| 779 | None | 20 |
3738
| 849 | None | 14 |
3839
+------------+-------+-----+
39-
<strong>Output:
40+
<strong>输出:
4041
</strong>+------------+-------+-----+
4142
| student_id | name | age |
4243
+------------+-------+-----+
4344
| 32 | Piper | 5 |
4445
| 217 | Grace | 19 |
4546
+------------+-------+-----+
46-
<strong>Explanation:</strong>
47-
Students with ids 779 and 849 have empty values in the name column, so they will be removed.</pre>
47+
<b>解释:
48+
</b>学号为 779 849 的学生所在行在 name 列中有空值,因此它们将被删除。</pre>
4849

4950
## 解法
5051

‎solution/2800-2899/2884.Modify Columns/README.md‎

Lines changed: 10 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# [2884. Modify Columns](https://leetcode.cn/problems/modify-columns)
1+
# [2884. 修改列](https://leetcode.cn/problems/modify-columns)
22

33
[English Version](/solution/2800-2899/2884.Modify%20Columns/README_EN.md)
44

@@ -16,17 +16,18 @@ DataFrame <code>employees</code>
1616
+-------------+--------+
1717
</pre>
1818

19-
<p>A company intends to give its employees a pay rise.</p>
19+
<p>一家公司决定增加员工的薪水。</p>
2020

21-
<p>Write a solution to <strong>modify</strong> the <code>salary</code> column by multiplying each salary by 2.</p>
21+
<p>编写一个解决方案,将每个员工的薪水乘以2来 <strong>修改</strong>&nbsp;<code>salary</code>&nbsp;列。</p>
2222

23-
<p>The result format is in the following example.</p>
23+
<p>返回结果格式如下示例所示。</p>
2424

2525
<p>&nbsp;</p>
26-
<p><strong class="example">Example 1:</strong></p>
26+
27+
<p><b>示例 1:</b></p>
2728

2829
<pre>
29-
<strong>Input:
30+
<strong>输入:
3031
</strong>DataFrame employees
3132
+---------+--------+
3233
| name | salary |
@@ -36,7 +37,7 @@ DataFrame <code>employees</code>
3637
| Mia | 62509 |
3738
| Ulysses | 54866 |
3839
+---------+--------+
39-
<strong>Output:
40+
<strong>输出:
4041
</strong>+---------+--------+
4142
| name | salary |
4243
+---------+--------+
@@ -45,8 +46,8 @@ DataFrame <code>employees</code>
4546
| Mia | 125018 |
4647
| Ulysses | 109732 |
4748
+---------+--------+
48-
<strong>Explanation:
49-
</strong>Every salary has been doubled.</pre>
49+
<strong>解释:
50+
</strong>每个人的薪水都被加倍。</pre>
5051

5152
## 解法
5253

‎solution/2800-2899/2885.Rename Columns/README.md‎

Lines changed: 14 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# [2885. Rename Columns](https://leetcode.cn/problems/rename-columns)
1+
# [2885. 重命名列](https://leetcode.cn/problems/rename-columns)
22

33
[English Version](/solution/2800-2899/2885.Rename%20Columns/README_EN.md)
44

@@ -18,21 +18,23 @@ DataFrame <code>students</code>
1818
+-------------+--------+
1919
</pre>
2020

21-
<p>Write a solution to rename the columns as follows:</p>
21+
<p>编写一个解决方案,按以下方式重命名列:</p>
2222

2323
<ul>
24-
<li><code>id</code> to <code>student_id</code></li>
25-
<li><code>first</code> to <code>first_name</code></li>
26-
<li><code>last</code> to <code>last_name</code></li>
27-
<li><code>age</code> to <code>age_in_years</code></li>
24+
<li><code>id</code>&nbsp;重命名为&nbsp;<code>student_id</code></li>
25+
<li><code>first</code>&nbsp;重命名为&nbsp;<code>first_name</code></li>
26+
<li><code>last</code>&nbsp;重命名为&nbsp;<code>last_name</code></li>
27+
<li><code>age</code>&nbsp;重命名为&nbsp;<code>age_in_years</code></li>
2828
</ul>
2929

30-
<p>The result format is in the following example.</p>
30+
<p>返回结果格式如下示例所示。</p>
3131

3232
<p>&nbsp;</p>
33+
34+
<p><strong>示例 1:</strong></p>
35+
3336
<pre>
34-
<strong class="example">Example 1:</strong>
35-
<strong>Input:
37+
<strong>输入:
3638
</strong>+----+---------+----------+-----+
3739
| id | first | last | age |
3840
+----+---------+----------+-----+
@@ -42,7 +44,7 @@ DataFrame <code>students</code>
4244
| 4 | Georgia | Thompson | 18 |
4345
| 5 | Thomas | Moore | 10 |
4446
+----+---------+----------+-----+
45-
<strong>Output:</strong>
47+
<b>输出:</b>
4648
+------------+------------+-----------+--------------+
4749
| student_id | first_name | last_name | age_in_years |
4850
+------------+------------+-----------+--------------+
@@ -52,8 +54,8 @@ DataFrame <code>students</code>
5254
| 4 | Georgia | Thompson | 18 |
5355
| 5 | Thomas | Moore | 10 |
5456
+------------+------------+-----------+--------------+
55-
<strong>Explanation:</strong>
56-
The column names are changed accordingly.</pre>
57+
<b>解释:</b>
58+
列名已相应更换。</pre>
5759

5860
## 解法
5961

‎solution/2800-2899/2886.Change Data Type/README.md‎

Lines changed: 11 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# [2886. Change Data Type](https://leetcode.cn/problems/change-data-type)
1+
# [2886. 改变数据类型](https://leetcode.cn/problems/change-data-type)
22

33
[English Version](/solution/2800-2899/2886.Change%20Data%20Type/README_EN.md)
44

@@ -18,32 +18,34 @@ DataFrame <code>students</code>
1818
+-------------+--------+
1919
</pre>
2020

21-
<p>Write a solution to correct the errors:</p>
21+
<p>编写一个解决方案来纠正以下错误:</p>
2222

23-
<p>The <code>grade</code> column is stored as floats,&nbsp;convert it to integers.</p>
23+
<p>&nbsp;<code>grade</code>&nbsp;列被存储为浮点数,将它转换为整数。</p>
2424

25-
<p>The result format is in the following example.</p>
25+
<p>返回结果格式如下示例所示。</p>
2626

2727
<p>&nbsp;</p>
28+
29+
<p><strong>示例 1:</strong></p>
30+
2831
<pre>
29-
<strong class="example">Example 1:</strong>
30-
<strong>Input:
32+
<strong>输入:
3133
</strong>DataFrame students:
3234
+------------+------+-----+-------+
3335
| student_id | name | age | grade |
3436
+------------+------+-----+-------+
3537
| 1 | Ava | 6 | 73.0 |
3638
| 2 | Kate | 15 | 87.0 |
3739
+------------+------+-----+-------+
38-
<strong>Output:
40+
<strong>输出:
3941
</strong>+------------+------+-----+-------+
4042
| student_id | name | age | grade |
4143
+------------+------+-----+-------+
4244
| 1 | Ava | 6 | 73 |
4345
| 2 | Kate | 15 | 87 |
4446
+------------+------+-----+-------+
45-
<strong>Explanation:</strong>
46-
The data types of the column grade is converted to int.</pre>
47+
<b>解释:</b>
48+
grade 列的数据类型已转换为整数。</pre>
4749

4850
## 解法
4951

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /