Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 909a8b7

Browse files
committed
패키지들 최신버전으로 업데이트 (Check README.md)
1 parent 00d4418 commit 909a8b7

File tree

11 files changed

+15
-15
lines changed

11 files changed

+15
-15
lines changed

‎04 - Neural Network Basic/02 - Deep NN.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@
4444
# 텐서플로우에서 기본적으로 제공되는 크로스 엔트로피 함수를 이용해
4545
# 복잡한 수식을 사용하지 않고도 최적화를 위한 비용 함수를 다음처럼 간단하게 적용할 수 있습니다.
4646
cost = tf.reduce_mean(
47-
tf.nn.softmax_cross_entropy_with_logits(labels=Y, logits=model))
47+
tf.nn.softmax_cross_entropy_with_logits_v2(labels=Y, logits=model))
4848

4949
optimizer = tf.train.AdamOptimizer(learning_rate=0.01)
5050
train_op = optimizer.minimize(cost)

‎05 - TensorBoard, Saver/01 - Saver.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@
3333
model = tf.matmul(L2, W3)
3434

3535
cost = tf.reduce_mean(
36-
tf.nn.softmax_cross_entropy_with_logits(labels=Y, logits=model))
36+
tf.nn.softmax_cross_entropy_with_logits_v2(labels=Y, logits=model))
3737

3838
optimizer = tf.train.AdamOptimizer(learning_rate=0.01)
3939
# global_step로 넘겨준 변수를, 학습용 변수들을 최적화 할 때 마다 학습 횟수를 하나씩 증가시킵니다.

‎05 - TensorBoard, Saver/02 - TensorBoard.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@
3434

3535
with tf.name_scope('optimizer'):
3636
cost = tf.reduce_mean(
37-
tf.nn.softmax_cross_entropy_with_logits(labels=Y, logits=model))
37+
tf.nn.softmax_cross_entropy_with_logits_v2(labels=Y, logits=model))
3838

3939
optimizer = tf.train.AdamOptimizer(learning_rate=0.01)
4040
train_op = optimizer.minimize(cost, global_step=global_step)

‎05 - TensorBoard, Saver/03 - TensorBoard2.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@
3737

3838
with tf.name_scope('optimizer'):
3939
cost = tf.reduce_mean(
40-
tf.nn.softmax_cross_entropy_with_logits(labels=Y, logits=model))
40+
tf.nn.softmax_cross_entropy_with_logits_v2(labels=Y, logits=model))
4141

4242
optimizer = tf.train.AdamOptimizer(learning_rate=0.01)
4343
train_op = optimizer.minimize(cost, global_step=global_step)

‎06 - MNIST/01 - MNIST.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@
3232
# 최종 모델의 출력값은 W3 변수를 곱해 10개의 분류를 가지게 됩니다.
3333
model = tf.matmul(L2, W3)
3434

35-
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=model, labels=Y))
35+
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=model, labels=Y))
3636
optimizer = tf.train.AdamOptimizer(0.001).minimize(cost)
3737

3838
#########

‎06 - MNIST/02 - Dropout.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
W3 = tf.Variable(tf.random_normal([256, 10], stddev=0.01))
2727
model = tf.matmul(L2, W3)
2828

29-
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=model, labels=Y))
29+
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=model, labels=Y))
3030
optimizer = tf.train.AdamOptimizer(0.001).minimize(cost)
3131

3232
#########

‎07 - CNN/01 - CNN.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,7 @@
4848
W4 = tf.Variable(tf.random_normal([256, 10], stddev=0.01))
4949
model = tf.matmul(L3, W4)
5050

51-
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=model, labels=Y))
51+
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=model, labels=Y))
5252
optimizer = tf.train.AdamOptimizer(0.001).minimize(cost)
5353
# 최적화 함수를 RMSPropOptimizer 로 바꿔서 결과를 확인해봅시다.
5454
# optimizer = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)

‎07 - CNN/02 - tf.layers.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@
3232

3333
model = tf.layers.dense(L3, 10, activation=None)
3434

35-
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=model, labels=Y))
35+
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=model, labels=Y))
3636
optimizer = tf.train.AdamOptimizer(0.001).minimize(cost)
3737

3838
#########

‎10 - RNN/01 - MNIST.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,7 @@
5454
outputs = outputs[-1]
5555
model = tf.matmul(outputs, W) + b
5656

57-
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=model, labels=Y))
57+
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=model, labels=Y))
5858
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
5959

6060
#########

‎11 - Inception/retrain.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -722,7 +722,7 @@ def add_final_training_ops(class_count, final_tensor_name, bottleneck_tensor):
722722
tf.summary.histogram('activations', final_tensor)
723723

724724
with tf.name_scope('cross_entropy'):
725-
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
725+
cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(
726726
labels=ground_truth_input, logits=logits)
727727
with tf.name_scope('total'):
728728
cross_entropy_mean = tf.reduce_mean(cross_entropy)

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /