@@ -899,15 +899,15 @@ Exceptions trigger an `error stop`.
899
899
{!example/linalg/example_determinant2.f90!}
900
900
```
901
901
902
- ## ` svd ` - Compute the singular value decomposition of a 2d matrix.
902
+ ## ` svd ` - Compute the singular value decomposition of a rank-2 array ( matrix) .
903
903
904
904
### Status
905
905
906
906
Experimental
907
907
908
908
### Description
909
909
910
- This subroutine computes the singular value decomposition of a ` real ` or ` complex ` 2d matrix \( A = U \cdot S \cdot \V^T \) .
910
+ This subroutine computes the singular value decomposition of a ` real ` or ` complex ` rank-2 array ( matrix) \( A = U \cdot S \cdot \V^T \) .
911
911
The solver is based on LAPACK's ` *GESDD ` backends.
912
912
913
913
Result vector ` s ` returns the array of singular values on the diagonal of \( S \) .
@@ -953,15 +953,15 @@ Exceptions trigger an `error stop`, unless argument `err` is present.
953
953
{!example/linalg/example_svd.f90!}
954
954
```
955
955
956
- ## ` svdvals ` - Compute the singular values of a 2d matrix.
956
+ ## ` svdvals ` - Compute the singular values of a rank-2 array ( matrix) .
957
957
958
958
### Status
959
959
960
960
Experimental
961
961
962
962
### Description
963
963
964
- This subroutine computes the singular values of a ` real ` or ` complex ` 2d matrix from its singular
964
+ This subroutine computes the singular values of a ` real ` or ` complex ` rank-2 array ( matrix) from its singular
965
965
value decomposition \( A = U \cdot S \cdot \V^T \) . The solver is based on LAPACK's ` *GESDD ` backends.
966
966
967
967
Result vector ` s ` returns the array of singular values on the diagonal of \( S \) .
0 commit comments