Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 7511064

Browse files
authored
Fix Gaussian distribution formula in documentation (#889)
2 parents 3369013 + d9e6f3f commit 7511064

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

‎doc/specs/stdlib_stats_distribution_normal.md‎

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -64,11 +64,11 @@ Experimental
6464

6565
The probability density function (pdf) of the single real variable normal distribution:
6666

67-
$$f(x) = \frac{1}{\sigma \sqrt{2}} \exp{\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]}$$
67+
$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp{\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]}$$
6868

6969
For a complex varible \( z=(x + y i) \) with independent real \( x \) and imaginary \( y \) parts, the joint probability density function is the product of the the corresponding real and imaginary marginal pdfs:[^2]
7070

71-
$$f(x + y \mathit{i}) = f(x) f(y) = \frac{1}{2\sigma_{x}\sigma_{y}} \exp{\left[-\frac{1}{2}\left(\left(\frac{x-\mu_x}{\sigma_{x}}\right)^{2}+\left(\frac{y-\mu_y}{\sigma_{y}}\right)^{2}\right)\right]}$$
71+
$$f(x + y \mathit{i}) = f(x) f(y) = \frac{1}{2\pi\sigma_{x}\sigma_{y}} \exp{\left[-\frac{1}{2}\left(\left(\frac{x-\mu_x}{\sigma_{x}}\right)^{2}+\left(\frac{y-\mu_y}{\sigma_{y}}\right)^{2}\right)\right]}$$
7272

7373
### Syntax
7474

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /