|
| 1 | +You are given an n x n square matrix of integers grid. Return the matrix such that: |
| 2 | + |
| 3 | +The diagonals in the bottom-left triangle (including the middle diagonal) are sorted in non-increasing order. |
| 4 | +The diagonals in the top-right triangle are sorted in non-decreasing order. |
| 5 | +------------------------------------------------------------------------------------------------------------------------------------- |
| 6 | + |
| 7 | + |
| 8 | + class Solution: |
| 9 | + def sortMatrix(self, grid: List[List[int]]) -> List[List[int]]: |
| 10 | + n=len(grid) |
| 11 | + # upper right triangle j=i+d |
| 12 | + for d in range(n-2, -1, -1): |
| 13 | + diag=sorted(grid[i][i+d] for i in range(n-d)) |
| 14 | + for i, x in enumerate(diag): |
| 15 | + grid[i][i+d]=x |
| 16 | + # lower left triangle i=j+d |
| 17 | + for d in range(n-1): |
| 18 | + diag=sorted((grid[j+d][j] for j in range(n-d)), reverse=True) |
| 19 | + for j, x in enumerate(diag): |
| 20 | + grid[j+d][j]=x |
| 21 | + return grid |
| 22 | + |
| 23 | + |
| 24 | + |
0 commit comments