Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 9c95bdb

Browse files
feat: add solutions to lc problem: No.1007 (#1752)
NO.1007.Minimum Domino Rotations For Equal Row
1 parent fe575a0 commit 9c95bdb

File tree

7 files changed

+384
-40
lines changed

7 files changed

+384
-40
lines changed

‎solution/1000-1099/1007.Minimum Domino Rotations For Equal Row/README.md‎

Lines changed: 137 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -48,22 +48,158 @@
4848

4949
<!-- 这里可写通用的实现逻辑 -->
5050

51+
**方法一:贪心**
52+
53+
根据题目描述,我们知道,要使得 $tops$ 中所有值或者 $bottoms$ 中所有值都相同,那么这个值必须是 $tops[0]$ 或者 $bottoms[0]$ 中的一个。
54+
55+
因此,我们设计一个函数 $f(x),ドル表示将所有的值都变成 $x$ 的最小旋转次数,那么答案就是 $\min\{f(\textit{tops}[0]), f(\textit{bottoms}[0])\}$。
56+
57+
函数 $f(x)$ 的计算方法如下:
58+
59+
我们用两个变量 $cnt1$ 和 $cnt2$ 统计 $tops$ 和 $bottoms$ 中等于 $x$ 的个数,用 $n$ 减去它们的最大值,就是将所有值都变成 $x$ 的最小旋转次数。注意,如果 $tops$ 和 $bottoms$ 中没有等于 $x$ 的值,那么 $f(x)$ 的值就是一个很大的数,我们用 $n + 1$ 表示这个数。
60+
61+
时间复杂度 $O(n),ドル其中 $n$ 是数组的长度。空间复杂度 $O(1)$。
62+
5163
<!-- tabs:start -->
5264

5365
### **Python3**
5466

5567
<!-- 这里可写当前语言的特殊实现逻辑 -->
5668

5769
```python
58-
70+
class Solution:
71+
def minDominoRotations(self, tops: List[int], bottoms: List[int]) -> int:
72+
def f(x: int) -> int:
73+
cnt1 = cnt2 = 0
74+
for a, b in zip(tops, bottoms):
75+
if x not in (a, b):
76+
return inf
77+
cnt1 += a == x
78+
cnt2 += b == x
79+
return len(tops) - max(cnt1, cnt2)
80+
81+
ans = min(f(tops[0]), f(bottoms[0]))
82+
return -1 if ans == inf else ans
5983
```
6084

6185
### **Java**
6286

6387
<!-- 这里可写当前语言的特殊实现逻辑 -->
6488

6589
```java
90+
class Solution {
91+
private int n;
92+
private int[] tops;
93+
private int[] bottoms;
94+
95+
public int minDominoRotations(int[] tops, int[] bottoms) {
96+
n = tops.length;
97+
this.tops = tops;
98+
this.bottoms = bottoms;
99+
int ans = Math.min(f(tops[0]), f(bottoms[0]));
100+
return ans > n ? -1 : ans;
101+
}
102+
103+
private int f(int x) {
104+
int cnt1 = 0, cnt2 = 0;
105+
for (int i = 0; i < n; ++i) {
106+
if (tops[i] != x && bottoms[i] != x) {
107+
return n + 1;
108+
}
109+
cnt1 += tops[i] == x ? 1 : 0;
110+
cnt2 += bottoms[i] == x ? 1 : 0;
111+
}
112+
return n - Math.max(cnt1, cnt2);
113+
}
114+
}
115+
```
116+
117+
### **C++**
118+
119+
```cpp
120+
class Solution {
121+
public:
122+
int minDominoRotations(vector<int>& tops, vector<int>& bottoms) {
123+
int n = tops.size();
124+
auto f = [&](int x) {
125+
int cnt1 = 0, cnt2 = 0;
126+
for (int i = 0; i < n; ++i) {
127+
if (tops[i] != x && bottoms[i] != x) {
128+
return n + 1;
129+
}
130+
cnt1 += tops[i] == x;
131+
cnt2 += bottoms[i] == x;
132+
}
133+
return n - max(cnt1, cnt2);
134+
};
135+
int ans = min(f(tops[0]), f(bottoms[0]));
136+
return ans > n ? -1 : ans;
137+
}
138+
};
139+
```
140+
141+
### **Go**
142+
143+
```go
144+
func minDominoRotations(tops []int, bottoms []int) int {
145+
n := len(tops)
146+
f := func(x int) int {
147+
cnt1, cnt2 := 0, 0
148+
for i, a := range tops {
149+
b := bottoms[i]
150+
if a != x && b != x {
151+
return n + 1
152+
}
153+
if a == x {
154+
cnt1++
155+
}
156+
if b == x {
157+
cnt2++
158+
}
159+
}
160+
return n - max(cnt1, cnt2)
161+
}
162+
ans := min(f(tops[0]), f(bottoms[0]))
163+
if ans > n {
164+
return -1
165+
}
166+
return ans
167+
}
168+
169+
func max(a, b int) int {
170+
if a > b {
171+
return a
172+
}
173+
return b
174+
}
175+
176+
func min(a, b int) int {
177+
if a < b {
178+
return a
179+
}
180+
return b
181+
}
182+
```
66183

184+
### **TypeScript**
185+
186+
```ts
187+
function minDominoRotations(tops: number[], bottoms: number[]): number {
188+
const n = tops.length;
189+
const f = (x: number): number => {
190+
let [cnt1, cnt2] = [0, 0];
191+
for (let i = 0; i < n; ++i) {
192+
if (tops[i] !== x && bottoms[i] !== x) {
193+
return n + 1;
194+
}
195+
cnt1 += tops[i] === x ? 1 : 0;
196+
cnt2 += bottoms[i] === x ? 1 : 0;
197+
}
198+
return n - Math.max(cnt1, cnt2);
199+
};
200+
const ans = Math.min(f(tops[0]), f(bottoms[0]));
201+
return ans > n ? -1 : ans;
202+
}
67203
```
68204

69205
### **...**

‎solution/1000-1099/1007.Minimum Domino Rotations For Equal Row/README_EN.md‎

Lines changed: 137 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -43,18 +43,154 @@ In this case, it is not possible to rotate the dominoes to make one row of value
4343

4444
## Solutions
4545

46+
**Solution 1: Greedy**
47+
48+
According to the problem description, we know that in order to make all values in $tops$ or all values in $bottoms$ the same, the value must be one of $tops[0]$ or $bottoms[0]$.
49+
50+
Therefore, we design a function $f(x)$ to represent the minimum number of rotations required to make all values equal to $x$. Then the answer is $\min\{f(\textit{tops}[0]), f(\textit{bottoms}[0])\}$.
51+
52+
The calculation method of function $f(x)$ is as follows:
53+
54+
We use two variables $cnt1$ and $cnt2$ to count the number of occurrences of $x$ in $tops$ and $bottoms,ドル respectively. We subtract the maximum value of $cnt1$ and $cnt2$ from $n,ドル which is the minimum number of rotations required to make all values equal to $x$. Note that if there are no values equal to $x$ in $tops$ and $bottoms,ドル the value of $f(x)$ is a very large number, which we represent as $n+1$.
55+
56+
The time complexity is $O(n),ドル where $n$ is the length of the array. The space complexity is $O(1)$.
57+
4658
<!-- tabs:start -->
4759

4860
### **Python3**
4961

5062
```python
51-
63+
class Solution:
64+
def minDominoRotations(self, tops: List[int], bottoms: List[int]) -> int:
65+
def f(x: int) -> int:
66+
cnt1 = cnt2 = 0
67+
for a, b in zip(tops, bottoms):
68+
if x not in (a, b):
69+
return inf
70+
cnt1 += a == x
71+
cnt2 += b == x
72+
return len(tops) - max(cnt1, cnt2)
73+
74+
ans = min(f(tops[0]), f(bottoms[0]))
75+
return -1 if ans == inf else ans
5276
```
5377

5478
### **Java**
5579

5680
```java
81+
class Solution {
82+
private int n;
83+
private int[] tops;
84+
private int[] bottoms;
85+
86+
public int minDominoRotations(int[] tops, int[] bottoms) {
87+
n = tops.length;
88+
this.tops = tops;
89+
this.bottoms = bottoms;
90+
int ans = Math.min(f(tops[0]), f(bottoms[0]));
91+
return ans > n ? -1 : ans;
92+
}
93+
94+
private int f(int x) {
95+
int cnt1 = 0, cnt2 = 0;
96+
for (int i = 0; i < n; ++i) {
97+
if (tops[i] != x && bottoms[i] != x) {
98+
return n + 1;
99+
}
100+
cnt1 += tops[i] == x ? 1 : 0;
101+
cnt2 += bottoms[i] == x ? 1 : 0;
102+
}
103+
return n - Math.max(cnt1, cnt2);
104+
}
105+
}
106+
```
107+
108+
### **C++**
109+
110+
```cpp
111+
class Solution {
112+
public:
113+
int minDominoRotations(vector<int>& tops, vector<int>& bottoms) {
114+
int n = tops.size();
115+
auto f = [&](int x) {
116+
int cnt1 = 0, cnt2 = 0;
117+
for (int i = 0; i < n; ++i) {
118+
if (tops[i] != x && bottoms[i] != x) {
119+
return n + 1;
120+
}
121+
cnt1 += tops[i] == x;
122+
cnt2 += bottoms[i] == x;
123+
}
124+
return n - max(cnt1, cnt2);
125+
};
126+
int ans = min(f(tops[0]), f(bottoms[0]));
127+
return ans > n ? -1 : ans;
128+
}
129+
};
130+
```
131+
132+
### **Go**
133+
134+
```go
135+
func minDominoRotations(tops []int, bottoms []int) int {
136+
n := len(tops)
137+
f := func(x int) int {
138+
cnt1, cnt2 := 0, 0
139+
for i, a := range tops {
140+
b := bottoms[i]
141+
if a != x && b != x {
142+
return n + 1
143+
}
144+
if a == x {
145+
cnt1++
146+
}
147+
if b == x {
148+
cnt2++
149+
}
150+
}
151+
return n - max(cnt1, cnt2)
152+
}
153+
ans := min(f(tops[0]), f(bottoms[0]))
154+
if ans > n {
155+
return -1
156+
}
157+
return ans
158+
}
159+
160+
func max(a, b int) int {
161+
if a > b {
162+
return a
163+
}
164+
return b
165+
}
166+
167+
func min(a, b int) int {
168+
if a < b {
169+
return a
170+
}
171+
return b
172+
}
173+
```
57174

175+
### **TypeScript**
176+
177+
```ts
178+
function minDominoRotations(tops: number[], bottoms: number[]): number {
179+
const n = tops.length;
180+
const f = (x: number): number => {
181+
let [cnt1, cnt2] = [0, 0];
182+
for (let i = 0; i < n; ++i) {
183+
if (tops[i] !== x && bottoms[i] !== x) {
184+
return n + 1;
185+
}
186+
cnt1 += tops[i] === x ? 1 : 0;
187+
cnt2 += bottoms[i] === x ? 1 : 0;
188+
}
189+
return n - Math.max(cnt1, cnt2);
190+
};
191+
const ans = Math.min(f(tops[0]), f(bottoms[0]));
192+
return ans > n ? -1 : ans;
193+
}
58194
```
59195

60196
### **...**
Lines changed: 19 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,19 @@
1+
class Solution {
2+
public:
3+
int minDominoRotations(vector<int>& tops, vector<int>& bottoms) {
4+
int n = tops.size();
5+
auto f = [&](int x) {
6+
int cnt1 = 0, cnt2 = 0;
7+
for (int i = 0; i < n; ++i) {
8+
if (tops[i] != x && bottoms[i] != x) {
9+
return n + 1;
10+
}
11+
cnt1 += tops[i] == x;
12+
cnt2 += bottoms[i] == x;
13+
}
14+
return n - max(cnt1, cnt2);
15+
};
16+
int ans = min(f(tops[0]), f(bottoms[0]));
17+
return ans > n ? -1 : ans;
18+
}
19+
};
Lines changed: 38 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,38 @@
1+
func minDominoRotations(tops []int, bottoms []int) int {
2+
n := len(tops)
3+
f := func(x int) int {
4+
cnt1, cnt2 := 0, 0
5+
for i, a := range tops {
6+
b := bottoms[i]
7+
if a != x && b != x {
8+
return n + 1
9+
}
10+
if a == x {
11+
cnt1++
12+
}
13+
if b == x {
14+
cnt2++
15+
}
16+
}
17+
return n - max(cnt1, cnt2)
18+
}
19+
ans := min(f(tops[0]), f(bottoms[0]))
20+
if ans > n {
21+
return -1
22+
}
23+
return ans
24+
}
25+
26+
func max(a, b int) int {
27+
if a > b {
28+
return a
29+
}
30+
return b
31+
}
32+
33+
func min(a, b int) int {
34+
if a < b {
35+
return a
36+
}
37+
return b
38+
}

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /