@@ -77,6 +77,41 @@ Edition: 1st   Pages: 532   Language: English<br/>
77
77
- Review case studies depicting applications of machine learning and deep learning on diverse domains and industries
78
78
- Apply a wide range of machine learning models including regression, classification, and clustering.
79
79
- Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning.
80
+
81
+
82
+ ## Powered by the following frameworks
83
+ <div >
84
+ <a target =" _blank " href =" https://anaconda.org/ " ><img src =" ./media/banners/anaconda_logo.jpg " alt =" anaconda " align =" left " /></a >
85
+ <a target =" _blank " href =" http://jupyter.org/ " ><img src =" ./media/banners/jupyter_logo.jpg " alt =" jupyter " align =" left " /></a >
86
+ <a target =" _blank " href =" http://www.numpy.org/ " ><img src =" ./media/banners/numpy_logo.jpg " alt =" numpy " align =" left " /></a >
87
+ <a target =" _blank " href =" https://www.scipy.org/ " ><img src =" ./media/banners/scipy_logo.jpg " alt =" scipy " align =" left " /></a >
88
+ <a target =" _blank " href =" https://pandas.pydata.org/ " ><img src =" ./media/banners/pandas_logo.jpg " alt =" pandas " align =" left " /></a >
89
+ </div >
90
+ <br ><br ><br >
91
+ <div >
92
+ <a target =" _blank " href =" http://www.statsmodels.org/stable/index.html " ><img src =" ./media/banners/statsmodels_logo.jpg " alt =" statsmodels " align =" left " /></a >
93
+ <a target =" _blank " href =" http://docs.python-requests.org/en/master/ " ><img src =" ./media/banners/requests_logo.jpg " alt =" requests " align =" left " /></a >
94
+ <a target =" _blank " href =" http://www.nltk.org/ " ><img src =" ./media/banners/nltk_logo.jpg " alt =" nltk " align =" left " /></a >
95
+ <a target =" _blank " href =" https://radimrehurek.com/gensim/ " ><img src =" ./media/banners/gensim_logo.jpg " alt =" gensim " align =" left " /></a >
96
+ <a target =" _blank " href =" https://spacy.io/ " ><img src =" ./media/banners/spacy_logo.jpg " alt =" spacy " align =" left " /></a >
97
+ </div >
98
+ <br ><br ><br >
99
+ <div >
100
+ <a target =" _blank " href =" http://scikit-learn.org/stable/ " ><img src =" ./media/banners/scikit-learn_logo.jpg " alt =" scikit-learn " align =" left " /></a >
101
+ <a target =" _blank " href =" https://www.datascience.com/resources/tools/skater " ><img src =" ./media/banners/skater_logo.png " alt =" skater " align =" left " /></a >
102
+ <a target =" _blank " href =" https://facebook.github.io/prophet/ " ><img src =" ./media/banners/prophet_logo.jpg " alt =" prophet " align =" left " /></a >
103
+ <a target =" _blank " href =" https://keras.io/ " ><img src =" ./media/banners/keras_logo.jpg " alt =" keras " align =" left " /></a >
104
+ <a target =" _blank " href =" https://www.tensorflow.org/ " ><img src =" ./media/banners/tensorflow_logo.jpg " alt =" tensorflow " align =" left " /></a >
105
+ </div >
106
+ <br ><br ><br >
107
+ <div >
108
+ <a target =" _blank " href =" https://matplotlib.org/ " ><img src =" ./media/banners/matplotlib_logo.jpg " alt =" matplotlib " align =" left " /></a >
109
+ <a target =" _blank " href =" https://orange.biolab.si/ " ><img src =" ./media/banners/orange_logo.jpg " alt =" orange " align =" left " /></a >
110
+ <a target =" _blank " href =" https://seaborn.pydata.org/ " ><img src =" ./media/banners/seaborn_logo.jpg " alt =" seaborn " align =" left " /></a >
111
+ <a target =" _blank " href =" https://plot.ly/ " ><img src =" ./media/banners/plotly_logo.jpg " alt =" plotly " align =" left " /></a >
112
+ <a target =" _blank " href =" https://www.crummy.com/software/BeautifulSoup/bs4/doc/ " ><img src =" ./media/banners/bs_logo.jpg " alt =" beautiful soup " align =" left " /></a >
113
+ </div >
114
+ <br ><br ><br >
80
115
81
116
## Audience
82
117
This book has been specially written for IT professionals, analysts, developers, data scientists, engineers, graduate students and anyone with an interest to analyze and derive insights from data!
0 commit comments