|
1 | | -/** |
2 | | - * Segment Tree implementation for Range Query data structure |
3 | | - * Tracks a array of numbers. 0 indexed |
4 | | - * operation is a binary function (eg sum, min) - needs to be associative |
5 | | - * identity is the identity of the operation |
6 | | - * i.e, operation(x, identity) = x (eg 0 for sum, Infinity for min) |
7 | | - * Supports methods |
8 | | - * update(index, val) - set value of index |
9 | | - * query(l, r) - finds operation(values in range [l, r]) (both inclusive) |
10 | | - * |
11 | | - * As is customary, we store the tree implicitly with i being the parent of 2i, 2i+1. |
12 | | - */ |
| 1 | +import isPowerOfTwo from '../../../algorithms/math/is-power-of-two/isPowerOfTwo'; |
13 | 2 |
|
14 | 3 | export default class SegmentTree {
|
15 | 4 | /**
|
16 | | - * array initialises the numbers |
17 | | - * @param {number[]} array |
| 5 | + * @param {number[]} inputArray |
| 6 | + * @param {function} operation - binary function (i.e. sum, min) |
| 7 | + * @param {number} operationFallback - operation fallback value (i.e. 0 for sum, Infinity for min) |
18 | 8 | */
|
19 | | - constructor(array, operation, identity) { |
20 | | - this.n = array.length; |
21 | | - this.array = array; |
22 | | - this.tree = new Array(4 * this.n); |
23 | | - |
| 9 | + constructor(inputArray, operation, operationFallback) { |
| 10 | + this.inputArray = inputArray; |
24 | 11 | this.operation = operation;
|
25 | | - this.identity = identity; |
26 | | - |
27 | | - // use Range Min Query by default |
28 | | - if (this.operation === undefined) { |
29 | | - this.operation = Math.min; |
30 | | - this.identity = Infinity; |
31 | | - } |
| 12 | + this.operationFallback = operationFallback; |
32 | 13 |
|
| 14 | + // Init array representation of segment tree. |
| 15 | + this.segmentTree = this.initSegmentTree(this.inputArray); |
33 | 16 |
|
34 | | - this.build(); |
| 17 | + this.buildSegmentTree(); |
35 | 18 | }
|
36 | 19 |
|
37 | 20 | /**
|
38 | | - * Stub for recursive call |
| 21 | + * @param {number[]} inputArray |
| 22 | + * @return {number[]} |
39 | 23 | */
|
40 | | - build() { |
41 | | - this.buildRec(1,0,this.n-1); |
42 | | - } |
| 24 | + initSegmentTree(inputArray) { |
| 25 | + letsegmentTreeArrayLength; |
| 26 | + constinputArrayLength=inputArray.length; |
43 | 27 |
|
44 | | - /** |
45 | | - * Left child index |
46 | | - * @param {number} root |
47 | | - */ |
48 | | - left(root) { |
49 | | - return 2 * root; |
| 28 | + if (isPowerOfTwo(inputArrayLength)) { |
| 29 | + // If original array length is a power of two. |
| 30 | + segmentTreeArrayLength = (2 * inputArrayLength) - 1; |
| 31 | + } else { |
| 32 | + // If original array length is not a power of two then we need to find |
| 33 | + // next number that is a power of two and use it to calculate |
| 34 | + // tree array size. This is happens because we need to fill empty children |
| 35 | + // in perfect binary tree with nulls.And those nulls need extra space. |
| 36 | + const currentPower = Math.floor(Math.log2(inputArrayLength)); |
| 37 | + const nextPower = currentPower + 1; |
| 38 | + const nextPowerOfTwoNumber = 2 ** nextPower; |
| 39 | + segmentTreeArrayLength = (2 * nextPowerOfTwoNumber) - 1; |
| 40 | + } |
| 41 | + |
| 42 | + return new Array(segmentTreeArrayLength).fill(null); |
50 | 43 | }
|
51 | 44 |
|
52 | 45 | /**
|
53 | | - * Right child index |
54 | | - * @param {number} root |
| 46 | + * Build segment tree. |
55 | 47 | */
|
56 | | - right(root) { |
57 | | - return (2 * root) + 1; |
| 48 | + buildSegmentTree() { |
| 49 | + const leftIndex = 0; |
| 50 | + const rightIndex = this.inputArray.length - 1; |
| 51 | + const position = 0; |
| 52 | + this.buildTreeRecursively(leftIndex, rightIndex, position); |
58 | 53 | }
|
59 | 54 |
|
60 | 55 | /**
|
61 | | - * root is the index in the tree, [l,r] (inclusive) is the current array segment being built |
62 | | - * @param {number} root |
63 | | - * @param {number} l |
64 | | - * @param {number} r |
| 56 | + * Build segment tree recursively. |
| 57 | + * |
| 58 | + * @param {number} leftInputIndex |
| 59 | + * @param {number} rightInputIndex |
| 60 | + * @param {number} position |
65 | 61 | */
|
66 | | - buildRec(root, l, r) { |
67 | | - if (l === r) { |
68 | | - this.tree[root] = this.array[l]; |
69 | | - } else { |
70 | | - const mid = Math.floor((l + r) / 2); |
71 | | - // build left and right nodes |
72 | | - this.buildRec(this.left(root), l, mid); |
73 | | - this.buildRec(this.right(root), mid + 1, r); |
74 | | - this.tree[root] = this.operation(this.tree[this.left(root)], this.tree[this.right(root)]); |
| 62 | + buildTreeRecursively(leftInputIndex, rightInputIndex, position) { |
| 63 | + // If low input index and high input index are equal that would mean |
| 64 | + // the we have finished splitting and we are already came to the leaf |
| 65 | + // of the segment tree. We need to copy this leaf value from input |
| 66 | + // array to segment tree. |
| 67 | + if (leftInputIndex === rightInputIndex) { |
| 68 | + this.segmentTree[position] = this.inputArray[leftInputIndex]; |
| 69 | + return; |
75 | 70 | }
|
| 71 | + |
| 72 | + // Split input array on two halves and process them recursively. |
| 73 | + const middleIndex = Math.floor((leftInputIndex + rightInputIndex) / 2); |
| 74 | + // Process left half of the input array. |
| 75 | + this.buildTreeRecursively(leftInputIndex, middleIndex, this.getLeftChildIndex(position)); |
| 76 | + // Process right half of the input array. |
| 77 | + this.buildTreeRecursively(middleIndex + 1, rightInputIndex, this.getRightChildIndex(position)); |
| 78 | + |
| 79 | + // Once every tree leaf is not empty we're able to build tree bottom up using |
| 80 | + // provided operation function. |
| 81 | + this.segmentTree[position] = this.operation( |
| 82 | + this.segmentTree[this.getLeftChildIndex(position)], |
| 83 | + this.segmentTree[this.getRightChildIndex(position)], |
| 84 | + ); |
76 | 85 | }
|
77 | 86 |
|
78 | 87 | /**
|
79 | | - * Stub for recursive call |
80 | | - * @param {number} lindex |
81 | | - * @param {number} rindex |
| 88 | + * Do range query on segment tree in context of this.operation function. |
| 89 | + * |
| 90 | + * @param {number} queryLeftIndex |
| 91 | + * @param {number} queryRightIndex |
| 92 | + * @return {number} |
82 | 93 | */
|
83 | | - query(lindex, rindex) { |
84 | | - return this.queryRec(1, lindex, rindex, 0, this.n - 1); |
| 94 | + rangeQuery(queryLeftIndex, queryRightIndex) { |
| 95 | + const leftIndex = 0; |
| 96 | + const rightIndex = this.inputArray.length - 1; |
| 97 | + const position = 0; |
| 98 | + |
| 99 | + return this.rangeQueryRecursive( |
| 100 | + queryLeftIndex, |
| 101 | + queryRightIndex, |
| 102 | + leftIndex, |
| 103 | + rightIndex, |
| 104 | + position, |
| 105 | + ); |
85 | 106 | }
|
86 | 107 |
|
87 | 108 | /**
|
88 | | - * [lindex, rindex] is the query region |
89 | | - * [l,r] is the current region being processed |
90 | | - * Guaranteed that [lindex,rindex] contained in [l,r] |
91 | | - * @param {number} root |
92 | | - * @param {number} lindex |
93 | | - * @param {number} rindex |
94 | | - * @param {number} l |
95 | | - * @param {number} r |
| 109 | + * Do range query on segment tree recursively in context of this.operation function. |
| 110 | + * |
| 111 | + * @param {number} queryLeftIndex - left index of the query |
| 112 | + * @param {number} queryRightIndex - right index of the query |
| 113 | + * @param {number} leftIndex - left index of input array segment |
| 114 | + * @param {number} rightIndex - right index of input array segment |
| 115 | + * @param {number} position - root position in binary tree |
| 116 | + * @return {number} |
96 | 117 | */
|
97 | | - queryRec(root, lindex, rindex, l, r) { |
98 | | - // console.log(root, lindex, rindex, l, r); |
99 | | - if (lindex > rindex) { |
100 | | - // happens when mid+1 > r - no segment |
101 | | - return this.identity; |
| 118 | + rangeQueryRecursive(queryLeftIndex, queryRightIndex, leftIndex, rightIndex, position) { |
| 119 | + if (queryLeftIndex <= leftIndex && queryRightIndex >= rightIndex) { |
| 120 | + // Total overlap. |
| 121 | + return this.segmentTree[position]; |
102 | 122 | }
|
103 | | - if (l === lindex && r === rindex) { |
104 | | - // query region matches current region - use tree value |
105 | | - return this.tree[root]; |
| 123 | + |
| 124 | + if (queryLeftIndex > rightIndex || queryRightIndex < leftIndex) { |
| 125 | + // No overlap. |
| 126 | + return this.operationFallback; |
106 | 127 | }
|
107 | | - const mid = Math.floor((l + r) / 2); |
108 | | - // get left and right results and combine |
109 | | - const leftResult = this.queryRec(this.left(root), lindex, Math.min(rindex, mid), l, mid); |
110 | | - const rightResult = this.queryRec( |
111 | | - this.right(root), Math.max(mid + 1, lindex), rindex, |
112 | | - mid + 1, r, |
| 128 | + |
| 129 | + // Partial overlap. |
| 130 | + const middleIndex = Math.floor((leftIndex + rightIndex) / 2); |
| 131 | + |
| 132 | + const leftOperationResult = this.rangeQueryRecursive( |
| 133 | + queryLeftIndex, |
| 134 | + queryRightIndex, |
| 135 | + leftIndex, |
| 136 | + middleIndex, |
| 137 | + this.getLeftChildIndex(position), |
113 | 138 | );
|
114 | | - return this.operation(leftResult, rightResult); |
| 139 | + |
| 140 | + const rightOperationResult = this.rangeQueryRecursive( |
| 141 | + queryLeftIndex, |
| 142 | + queryRightIndex, |
| 143 | + middleIndex + 1, |
| 144 | + rightIndex, |
| 145 | + this.getRightChildIndex(position), |
| 146 | + ); |
| 147 | + |
| 148 | + return this.operation(leftOperationResult, rightOperationResult); |
115 | 149 | }
|
116 | 150 |
|
117 | 151 | /**
|
118 | | - * Set array[index] to value |
119 | | - * @param {number} index |
120 | | - * @param {number} value |
| 152 | + * Left child index. |
| 153 | + * @param {number} parentIndex |
| 154 | + * @return {number} |
121 | 155 | */
|
122 | | - update(index, value) { |
123 | | - this.array[index] = value; |
124 | | - this.updateRec(1, index, value, 0, this.n - 1); |
| 156 | + getLeftChildIndex(parentIndex) { |
| 157 | + return (2 * parentIndex) + 1; |
125 | 158 | }
|
126 | 159 |
|
127 | 160 | /**
|
128 | | - * @param {number} root |
129 | | - * @param {number} index |
130 | | - * @param {number} value |
131 | | - * @param {number} l |
132 | | - * @param {number} r |
| 161 | + * Right child index. |
| 162 | + * @param {number} parentIndex |
| 163 | + * @return {number} |
133 | 164 | */
|
134 | | - updateRec(root, index, value, l, r) { |
135 | | - if (l === r) { |
136 | | - // we are at tree node containing array[index] |
137 | | - this.tree[root] = value; |
138 | | - } else { |
139 | | - const mid = Math.floor((l + r) / 2); |
140 | | - // update whichever child index is in, update this.tree[root] |
141 | | - if (index <= mid) { |
142 | | - this.updateRec(this.left(root), index, value, l, mid); |
143 | | - } else { |
144 | | - this.updateRec(this.right(root), index, value, mid + 1, r); |
145 | | - } |
146 | | - this.tree[root] = this.operation(this.tree[this.left(root)], this.tree[this.right(root)]); |
147 | | - } |
| 165 | + getRightChildIndex(parentIndex) { |
| 166 | + return (2 * parentIndex) + 2; |
148 | 167 | }
|
149 | 168 | }
|
0 commit comments