Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 1ff0989

Browse files
CUDA page
Signed-off-by: AlexDBlack <blacka101@gmail.com>
1 parent 4563aae commit 1ff0989

File tree

1 file changed

+23
-58
lines changed

1 file changed

+23
-58
lines changed

‎docs/_latest/deeplearning4j-config-cudnn.md

Lines changed: 23 additions & 58 deletions
Original file line numberDiff line numberDiff line change
@@ -10,12 +10,12 @@ weight: 3
1010

1111
Deeplearning4j supports CUDA but can be further accelerated with cuDNN. Most 2D CNN layers (such as ConvolutionLayer, SubsamplingLayer, etc), and also LSTM and BatchNormalization layers support CuDNN.
1212

13-
The only thing we need to do to have DL4J load cuDNN is to add a dependency on `deeplearning4j-cuda-9.0`, `deeplearning4j-cuda-9.2`, or `deeplearning4j-cuda-10.0`, for example:
13+
The only thing we need to do to have DL4J load cuDNN is to add a dependency on `deeplearning4j-cuda-9.2`, `deeplearning4j-cuda-10.0`, `deeplearning4j-cuda-10.1`, or `deeplearning4j-cuda-10.2` for example:
1414

1515
```xml
1616
<dependency>
1717
<groupId>org.deeplearning4j</groupId>
18-
<artifactId>deeplearning4j-cuda-9.0</artifactId>
18+
<artifactId>deeplearning4j-cuda-9.2</artifactId>
1919
<version>{{page.version}}</version>
2020
</dependency>
2121
```
@@ -24,7 +24,7 @@ or
2424
```xml
2525
<dependency>
2626
<groupId>org.deeplearning4j</groupId>
27-
<artifactId>deeplearning4j-cuda-9.2</artifactId>
27+
<artifactId>deeplearning4j-cuda-10.0</artifactId>
2828
<version>{{page.version}}</version>
2929
</dependency>
3030
```
@@ -33,11 +33,21 @@ or
3333
```xml
3434
<dependency>
3535
<groupId>org.deeplearning4j</groupId>
36-
<artifactId>deeplearning4j-cuda-10.0</artifactId>
36+
<artifactId>deeplearning4j-cuda-10.1</artifactId>
3737
<version>{{page.version}}</version>
3838
</dependency>
3939
```
4040

41+
or
42+
```xml
43+
<dependency>
44+
<groupId>org.deeplearning4j</groupId>
45+
<artifactId>deeplearning4j-cuda-10.2</artifactId>
46+
<version>{{page.version}}</version>
47+
</dependency>
48+
```
49+
50+
4151
The actual library for cuDNN is not bundled, so be sure to download and install the appropriate package for your platform from NVIDIA:
4252

4353
* [NVIDIA cuDNN](https://developer.nvidia.com/cudnn)
@@ -48,66 +58,21 @@ Note there are multiple combinations of cuDNN and CUDA supported. At this time t
4858
<th>CUDA Version</th>
4959
<th>cuDNN Version</th>
5060
</tr>
51-
<tr><td>9.0</td><td>7.0</td></tr>
52-
<tr><td>9.2</td><td>7.1</td></tr>
53-
<tr><td>10.0</td><td>7.3</td></tr>
61+
<tr><td>9.2</td><td>7.2</td></tr>
62+
<tr><td>10.0</td><td>7.4</td></tr>
63+
<tr><td>10.1</td><td>7.6</td></tr>
64+
<tr><td>10.2</td><td>7.6</td></tr>
5465
</table>
5566

5667

57-
To install, simply extract the library to a directory found in the system path used by native libraries. The easiest way is to place it alongside other libraries from CUDA in the default directory (`/usr/local/cuda/lib64/` on Linux, `/usr/local/cuda/lib/` on Mac OS X, and `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin\`, `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2\bin\`, or `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin\` on Windows).
68+
To install, simply extract the library to a directory found in the system path used by native libraries. The easiest way is to place it alongside other libraries from CUDA in the default directory (`/usr/local/cuda/lib64/` on Linux, `/usr/local/cuda/lib/` on Mac OS X, and `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin\`, `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin\`, or `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin\` on Windows).
5869

59-
Alternatively, in the case of CUDA 9.2 or 10.0, cuDNN comes bundled with the "redist" package of the [JavaCPP Presets for CUDA](https://github.com/bytedeco/javacpp-presets/tree/master/cuda). [After agreeing to the license](https://github.com/bytedeco/javacpp-presets/tree/master/cuda#license-agreements), we can add the following dependencies instead of installing CUDA and cuDNN:
70+
Alternatively, in the case of CUDA 10.2, cuDNN comes bundled with the "redist" package of the [JavaCPP Presets for CUDA](https://github.com/bytedeco/javacpp-presets/tree/master/cuda). [After agreeing to the license](https://github.com/bytedeco/javacpp-presets/tree/master/cuda#license-agreements), we can add the following dependencies instead of installing CUDA and cuDNN:
6071

6172
<dependency>
62-
<groupId>org.bytedeco.javacpp-presets</groupId>
63-
<artifactId>cuda</artifactId>
64-
<version>9.2-7.1-1.4.2</version>
65-
<classifier>linux-x86_64-redist</classifier>
66-
</dependency>
67-
<dependency>
68-
<groupId>org.bytedeco.javacpp-presets</groupId>
69-
<artifactId>cuda</artifactId>
70-
<version>9.2-7.1-1.4.2</version>
71-
<classifier>linux-ppc64le-redist</classifier>
72-
</dependency>
73-
<dependency>
74-
<groupId>org.bytedeco.javacpp-presets</groupId>
75-
<artifactId>cuda</artifactId>
76-
<version>9.2-7.1-1.4.2</version>
77-
<classifier>macosx-x86_64-redist</classifier>
78-
</dependency>
79-
<dependency>
80-
<groupId>org.bytedeco.javacpp-presets</groupId>
81-
<artifactId>cuda</artifactId>
82-
<version>9.2-7.1-1.4.2</version>
83-
<classifier>windows-x86_64-redist</classifier>
84-
</dependency>
85-
86-
or
87-
88-
<dependency>
89-
<groupId>org.bytedeco.javacpp-presets</groupId>
90-
<artifactId>cuda</artifactId>
91-
<version>10.0-7.3-1.4.3</version>
92-
<classifier>linux-x86_64-redist</classifier>
93-
</dependency>
94-
<dependency>
95-
<groupId>org.bytedeco.javacpp-presets</groupId>
96-
<artifactId>cuda</artifactId>
97-
<version>10.0-7.3-1.4.3</version>
98-
<classifier>linux-ppc64le-redist</classifier>
99-
</dependency>
100-
<dependency>
101-
<groupId>org.bytedeco.javacpp-presets</groupId>
102-
<artifactId>cuda</artifactId>
103-
<version>10.0-7.3-1.4.3</version>
104-
<classifier>macosx-x86_64-redist</classifier>
105-
</dependency>
106-
<dependency>
107-
<groupId>org.bytedeco.javacpp-presets</groupId>
108-
<artifactId>cuda</artifactId>
109-
<version>10.0-7.3-1.4.3</version>
110-
<classifier>windows-x86_64-redist</classifier>
73+
<groupId>org.bytedeco</groupId>
74+
<artifactId>cuda-platform-redist</artifactId>
75+
<version>10.2-7.6-1.5.2</version>
11176
</dependency>
11277

11378
Also note that, by default, Deeplearning4j will use the fastest algorithms available according to cuDNN, but memory usage may be excessive, causing strange launch errors. When this happens, try to reduce memory usage by using the [`NO_WORKSPACE` mode settable via the network configuration](/api/{{page.version}}/org/deeplearning4j/nn/conf/layers/ConvolutionLayer.Builder.html#cudnnAlgoMode-org.deeplearning4j.nn.conf.layers.ConvolutionLayer.AlgoMode-), instead of the default of `ConvolutionLayer.AlgoMode.PREFER_FASTEST`, for example:

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /