Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit abfaa43

Browse files
committed
updated: fixed issue with operations in the extended complex plane
1 parent 5038f93 commit abfaa43

File tree

2 files changed

+80
-45
lines changed

2 files changed

+80
-45
lines changed

‎contenido/esfera_de_riemann.html

Lines changed: 39 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -123,28 +123,45 @@ <h2>El Punto al infinito</h2>
123123
infinito.
124124
</p>
125125

126-
<p>En contraste con la línea real, para la cual los símbolos $+\infty$ y $-\infty$
127-
se puede agregar, en el caso de los números complejos $\mathbb C$
128-
solo necesitamos un símbolo $\infty.$ La razón es que $\mathbb C$
129-
es un conjunto que no tienen un orden natural como $\mathbb R.$
130-
Formalmente agregamos el símbolo $\infty$ a $\mathbb C$ para obtener el
131-
<em>plano complejo extendido</em>, denotado por
132-
$\mathbb C^*=\mathbb C \cup \{\infty\},$ y definimos las operaciones
133-
con $\infty$ con las siguientes reglas
134-
</p><div class="scroll-wrapper">
135-
\begin{eqnarray*}
136-
z+\infty&amp;=&amp;\infty\\
137-
z\cdot \infty&amp;=&amp;\infty \quad \quad \text{provided } z\neq 0\\
138-
\infty+\infty&amp;=&amp;\infty\\
139-
\infty\cdot\infty&amp;=&amp; \infty\\
140-
\frac{z}{\infty}&amp;=&amp;0
141-
\end{eqnarray*}
142-
</div>
143-
para $z\in \mathbb C.$ Notemos que algunas operaciones no están definidas:
144-
<div class="scroll-wrapper">
145-
$$\frac{\infty}{\infty},,円\quad 0\cdot \infty,,円\quad \infty-\infty,,円$$
146-
</div>
147-
y además no están definidas por las mismas razones que de su versión de números reales.<p></p>
126+
<p>A diferencia de la recta real, a la que se pueden añadir
127+
$+\infty$ y $-\infty,ドル en $\mathbb{C}$ solo tenemos un
128+
$\infty.$ La razón es que $\mathbb{C}$ no tiene un
129+
orden natural como lo tiene $\mathbb{R}.$ Formalmente,
130+
añadimos un símbolo $\infty$ a $\mathbb{C}$ para obtener
131+
el <em>plano complejo extendido</em>, denotado por
132+
$\mathbb{C}^* = \mathbb{C} \cup \{\infty\}.$
133+
Establecemos operaciones con $\infty$ definiendo:
134+
<br>
135+
<div class="scroll-wrapper">
136+
\begin{eqnarray*}
137+
z+\infty = \infty + z = \infty
138+
\end{eqnarray*}
139+
para todo $z \neq \infty,$ y
140+
<br>
141+
\begin{eqnarray*}
142+
z\cdot \infty = \infty \cdot z = \infty
143+
\end{eqnarray*}
144+
para todo $z \neq 0,$ incluyendo $z = \infty.$
145+
Sin embargo, no es posible definir
146+
<br>
147+
\begin{eqnarray*}
148+
\infty + \infty,,円,円 \infty - \infty,,円,円 0\cdot \infty
149+
\end{eqnarray*}
150+
</div>
151+
porque no hay interpretaciones algebraicas ni geométricas
152+
consistentes para estas operaciones.
153+
</p>
154+
155+
<p>
156+
Por convención especial también definimos:
157+
<div class="scroll-wrapper">
158+
\[
159+
\dfrac{z}{0} = \infty,円 \text{ para },円 z \neq 0
160+
\;\text{ y }\; \dfrac{z}{\infty} = 0,円 \text{ para },円 z \neq \infty.
161+
\]
162+
</div>
163+
Los cocientes $\dfrac{0}{0}$ y $\dfrac{\infty}{\infty}$ no están definidos.
164+
</p>
148165

149166
<p>
150167
El plano complejo extendido se puede mapear biyectivamente

‎content/riemann_sphere.html

Lines changed: 41 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -113,34 +113,52 @@ <h1>Riemann Sphere</h1>
113113

114114
<div id="section1">
115115
<h2>The Point at infinity</h2>
116-
<p>For some purposes it is convenient to introduce the <em>point at infinity</em>, denoted by $\infty,$
117-
in
118-
addition to the points $z\in \mathbb C.$ We must be careful in doing so, because it can lead to
119-
confusion
120-
and abuse of the symbol $\infty.$ However, with care it can be useful, if we want
121-
to be able to talk about infinite limits and limits at infinity.</p>
122-
123-
<p>In contrast to the real line, to which $+\infty$ and $-\infty$ can be added, we have only one
116+
<p>For some purposes it is convenient to introduce the
117+
<em>point at infinity</em>, denoted by $\infty,$
118+
in addition to the points $z\in \mathbb C.$ We must be
119+
careful in doing so, because it can lead to
120+
confusion and abuse of the symbol $\infty.$ However, with care
121+
it can be useful, if we want
122+
to be able to talk about infinite
123+
limits and limits at infinity.</p>
124+
125+
<p>In contrast to the real line, to which $+\infty$
126+
and $-\infty$ can be added, we have only one
124127
$\infty$ for
125-
$\mathbb C.$ The reason is that $\mathbb C$ has no natural ordering as $\mathbb R$ does. Formally we
126-
add a
127-
symbol $\infty$ to $\mathbb C$ to obtain the <em>extended complex plane</em>, denoted by $\mathbb
128-
C^*=\mathbb C \cup \{\infty\},$ and define operations with $\infty$ by the rules
129-
</p><div class="scroll-wrapper">
128+
$\mathbb C.$ The reason is that $\mathbb C$ has no
129+
natural ordering as $\mathbb R$ does. Formally we
130+
add a symbol $\infty$ to $\mathbb C$ to obtain the
131+
<em>extended complex plane</em>, denoted by $\mathbb
132+
C^*=\mathbb C \cup \{\infty\}.$
133+
We establish operations with $\infty$ by setting
134+
\begin{eqnarray*}
135+
z+\infty = \infty + z =\infty
136+
\end{eqnarray*}
137+
for every $z\neq \infty,$ and
130138
\begin{eqnarray*}
131-
z+\infty&amp;=&amp;\infty\\
132-
z\cdot \infty&amp;=&amp;\infty \quad \quad \text{provided } z\neq 0\\
133-
\infty+\infty&amp;=&amp;\infty\\
134-
\infty\cdot\infty&amp;=&amp; \infty\\
135-
\frac{z}{\infty}&amp;=&amp;0
139+
z\cdot \infty = \infty \cdot z =\infty
140+
\end{eqnarray*}
141+
for all $z\neq 0,$ including $z= \infty.$
142+
However, it is not possible to define
143+
<div class="scroll-wrapper">
144+
\begin{eqnarray*}
145+
\infty + \infty,,円,円 \infty - \infty,,円,円 0\cdot \infty
136146
\end{eqnarray*}
137147
</div>
148+
because there is no consistent algebraic
149+
or geometric interpretations for these operations.
150+
</p>
138151

139-
for $z\in \mathbb C.$ Notice that some operations are not defined:
140-
<div class="scroll-wrapper">
141-
$$\frac{\infty}{\infty},,円\quad 0\cdot \infty,,円\quad \infty-\infty,,円$$
142-
</div>
143-
and so forth are for the same reasons that they are in the calculus of real numbers.<p></p>
152+
<p>
153+
By special convention we also define
154+
<div class="scroll-wrapper">
155+
\[
156+
\dfrac{z}{0}= \infty,円 \text{ for },円 z\neq 0
157+
\;\text{ and }\; \dfrac{z}{\infty} = 0,円 \text{ for },円 z\neq \infty.
158+
\]
159+
</div>
160+
The quotients $\dfrac{0}{0}$ and $ \dfrac{\infty}{\infty}$ are undefined.
161+
</p>
144162

145163
<p>The extended complex plane can be mapped onto the
146164
surface of a sphere whose south pole corresponds to the origin and whose north

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /