Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 1f98c58

Browse files
SQL basics
1 parent 2951904 commit 1f98c58

File tree

3 files changed

+561
-0
lines changed

3 files changed

+561
-0
lines changed

‎Advanced Level.sql

Lines changed: 291 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,291 @@
1+
-- Advanced Level SQL Script Guide
2+
3+
-- Step 1: Advanced Database Administration
4+
-- Example 1: Create a database backup
5+
-- Note: Database backup commands can vary depending on the DBMS used.
6+
-- For MySQL, use: mysqldump -u username -p database_name > backup_file.sql
7+
8+
-- Example 2: Restore a database from a backup
9+
-- Note: Restore commands can vary depending on the DBMS used.
10+
-- For MySQL, use: mysql -u username -p database_name < backup_file.sql
11+
12+
-- Step 2: Database Performance Optimization
13+
-- Example: Analyze and optimize slow queries using indexes, table partitioning, and query rewriting.
14+
15+
-- Step 3: High Availability and Replication
16+
-- Example: Set up database replication for fault tolerance and scalability.
17+
18+
-- Step 4: Working with Large Databases
19+
-- Example 1: Create a partitioned table for faster data retrieval
20+
CREATE TABLE books_partitioned (
21+
book_id INT PRIMARY KEY,
22+
title VARCHAR(100),
23+
author_id INT,
24+
price DECIMAL(8,2)
25+
)
26+
PARTITION BY RANGE (book_id)(
27+
PARTITION p0 VALUES LESS THAN (100),
28+
PARTITION p1 VALUES LESS THAN (200),
29+
PARTITION p2 VALUES LESS THAN (MAXVALUE)
30+
);
31+
32+
-- Example 2: Implement Sharding for distributing data across multiple servers
33+
-- Note: Sharding is a complex technique and depends on the specific DBMS and setup.
34+
35+
-- Step 5: Advanced SQL Techniques
36+
-- Example 1: Recursive SQL for hierarchical data (revisited)
37+
WITH RECURSIVE category_tree AS (
38+
SELECT category_id, category_name, parent_category_id
39+
FROM categories
40+
WHERE category_id = 1
41+
UNION ALL
42+
SELECT c.category_id, c.category_name, c.parent_category_id
43+
FROM categories c
44+
JOIN category_tree ct ON c.parent_category_id = ct.category_id
45+
)
46+
SELECT * FROM category_tree;
47+
48+
-- Example 2: Pivoting Data using CASE and Aggregate functions
49+
SELECT
50+
author_id,
51+
SUM(CASE WHEN price > 20.00 THEN 1 ELSE 0 END) AS expensive_books,
52+
SUM(CASE WHEN price <= 20.00 THEN 1 ELSE 0 END) AS cheap_books
53+
FROM books
54+
GROUP BY author_id;
55+
56+
-- Step 6: Incorporating Machine Learning Models with SQL
57+
-- Example: Use a machine learning model to predict book prices based on other features.
58+
59+
-- Step 7: Advanced Data Analysis
60+
-- Example 1: Use advanced statistical functions for data analysis
61+
SELECT
62+
author_id,
63+
AVG(price) AS avg_price,
64+
STDDEV(price) AS price_stddev
65+
FROM books
66+
GROUP BY author_id;
67+
68+
-- Example 2: Use the LEAD and LAG functions for time-series analysis
69+
SELECT
70+
book_id,
71+
title,
72+
price,
73+
LAG(price) OVER (ORDER BY book_id) AS prev_price,
74+
LEAD(price) OVER (ORDER BY book_id) AS next_price
75+
FROM books;
76+
77+
-- Step 8: Real-World Projects
78+
-- Work on complex database projects involving big data, data warehousing, and analytics.
79+
80+
-- Example: Data Warehousing (Continued from Step 8)
81+
-- Assume you're working on a data warehousing project for an e-commerce company.
82+
83+
-- Create a data warehouse schema for online sales data.
84+
CREATE SCHEMA data_warehouse;
85+
86+
CREATE TABLE data_warehouse.sales (
87+
sale_id INT PRIMARY KEY,
88+
sale_date DATE NOT NULL,
89+
customer_id INT NOT NULL,
90+
product_id INT NOT NULL,
91+
quantity INT NOT NULL,
92+
total_price DECIMAL(10, 2) NOT NULL
93+
);
94+
95+
-- Implement ETL processes to populate the data warehouse.
96+
INSERT INTO data_warehouse.sales (sale_id, sale_date, customer_id, product_id, quantity, total_price)
97+
SELECT
98+
s.sale_id,
99+
s.sale_date,
100+
u.user_id AS customer_id,
101+
p.product_id,
102+
s.quantity,
103+
s.quantity * p.price AS total_price
104+
FROM online_sales.sales s
105+
JOIN users u ON s.username = u.username
106+
JOIN products p ON s.product_name = p.product_name;
107+
108+
-- Task 9: Advanced Security Measures
109+
-- Implement encryption, authentication, and authorization for securing sensitive data.
110+
111+
-- Example: Data Encryption (Continued from Task 9)
112+
-- Suppose you're working for a healthcare organization managing a database containing sensitive patient information.
113+
114+
-- Create a table to store patient records with encrypted data.
115+
CREATE TABLE patient_records (
116+
record_id INT PRIMARY KEY,
117+
patient_name VARBINARY(100) NOT NULL,
118+
medical_history VARBINARY(200),
119+
prescription VARBINARY(500)
120+
);
121+
122+
-- Implement data encryption using SQL's cryptographic functions.
123+
INSERT INTO patient_records (record_id, patient_name, medical_history, prescription)
124+
VALUES
125+
(1, AES_ENCRYPT('John Doe', 'encryption_key'), AES_ENCRYPT('Heart condition', 'encryption_key'), AES_ENCRYPT('Medication X', 'encryption_key')),
126+
(2, AES_ENCRYPT('Jane Smith', 'encryption_key'), AES_ENCRYPT('Allergy to penicillin', 'encryption_key'), AES_ENCRYPT('Medication Y', 'encryption_key'));
127+
128+
-- Task 10: Integration of SQL and NoSQL Databases (Continued from Task 10)
129+
-- Assume you have an SQL database for user information and a NoSQL database for user-generated content.
130+
131+
-- Example: Querying and combining data from SQL and NoSQL databases (Continued from Task 10)
132+
-- Retrieve user information along with their latest post (from NoSQL) if available.
133+
134+
SELECT
135+
u.user_id,
136+
u.username,
137+
u.email,
138+
u.registration_date,
139+
p.post_id,
140+
p.content AS latest_post
141+
FROM users u
142+
LEFT JOIN (
143+
SELECT user_id, MAX(post_id) AS post_id
144+
FROM user_posts.posts
145+
GROUP BY user_id
146+
) max_posts ON u.user_id = max_posts.user_id
147+
LEFT JOIN user_posts.posts p ON max_posts.post_id = p.post_id;
148+
149+
-- Step 10: Integration of SQL and NoSQL databases
150+
-- Example: Combining SQL and NoSQL Data
151+
152+
-- Assume you have an SQL database with 'users' table containing user information.
153+
CREATE TABLE users (
154+
user_id INT PRIMARY KEY,
155+
username VARCHAR(50) NOT NULL,
156+
email VARCHAR(100) NOT NULL,
157+
registration_date DATE NOT NULL
158+
);
159+
160+
INSERT INTO users (user_id, username, email, registration_date)
161+
VALUES
162+
(1, 'john_doe', 'john@example.com', '2023年07月01日'),
163+
(2, 'jane_smith', 'jane@example.com', '2023年07月02日');
164+
165+
-- Assume you have a NoSQL database storing user-generated content (e.g., posts) as JSON documents.
166+
-- Let's assume the NoSQL database is named 'user_posts' and the JSON documents are stored in a 'posts' collection.
167+
168+
-- Example: Querying and combining data from SQL and NoSQL databases
169+
-- Retrieve user information along with their latest post (from NoSQL) if available.
170+
171+
SELECT
172+
u.user_id,
173+
u.username,
174+
u.email,
175+
u.registration_date,
176+
p.post_id,
177+
p.content AS latest_post
178+
FROM users u
179+
LEFT JOIN (
180+
SELECT user_id, MAX(post_id) AS post_id
181+
FROM user_posts.posts
182+
GROUP BY user_id
183+
) max_posts ON u.user_id = max_posts.user_id
184+
LEFT JOIN user_posts.posts p ON max_posts.post_id = p.post_id;
185+
186+
-- Step 11: Real-Time Data Processing
187+
-- Example: Real-time analytics with streaming data
188+
189+
-- Assume you have a table for real-time transactions in an SQL database.
190+
CREATE TABLE real_time_transactions (
191+
transaction_id INT PRIMARY KEY,
192+
user_id INT NOT NULL,
193+
transaction_date TIMESTAMP NOT NULL,
194+
amount DECIMAL(10, 2) NOT NULL
195+
);
196+
197+
-- Example: Streaming Analytics
198+
-- Suppose you want to monitor real-time transactions and raise an alert for unusually large transactions.
199+
200+
-- Create a trigger to handle real-time data processing when a new transaction is inserted.
201+
DELIMITER //
202+
CREATE TRIGGER process_real_time_transactions
203+
AFTER INSERT ON real_time_transactions
204+
FOR EACH ROW
205+
BEGIN
206+
DECLARE avg_amount DECIMAL(10, 2);
207+
DECLARE std_amount DECIMAL(10, 2);
208+
SELECT AVG(amount), STDDEV(amount) INTO avg_amount, std_amount FROM real_time_transactions;
209+
IF NEW.amount > (avg_amount + 2 * std_amount) THEN
210+
INSERT INTO transaction_alerts (transaction_id, user_id, alert_message)
211+
VALUES (NEW.transaction_id, NEW.user_id, 'Unusually large transaction detected.');
212+
END IF;
213+
END;
214+
//
215+
DELIMITER ;
216+
217+
-- The trigger will analyze each new transaction and insert an entry in the 'transaction_alerts' table if the transaction amount is significantly larger than the average amount of all transactions.
218+
219+
-- Note: These are simplified examples to demonstrate the concepts. Real-world implementations may vary based on the specific database systems and requirements.
220+
221+
-- Step 12: Advanced Optimization Techniques
222+
-- Example: Query Optimization with Materialized Views
223+
224+
-- Assume you have a table 'orders' and want to create a materialized view for faster querying.
225+
CREATE TABLE orders (
226+
order_id INT PRIMARY KEY,
227+
customer_id INT NOT NULL,
228+
order_date DATE NOT NULL,
229+
total_amount DECIMAL(10, 2) NOT NULL
230+
);
231+
232+
-- Create a materialized view to store aggregated order data for faster retrieval.
233+
CREATE MATERIALIZED VIEW mv_order_summary AS
234+
SELECT
235+
customer_id,
236+
COUNT(order_id) AS order_count,
237+
SUM(total_amount) AS total_sales
238+
FROM orders
239+
GROUP BY customer_id;
240+
241+
-- Refresh the materialized view periodically to keep it up-to-date with the underlying data.
242+
REFRESH MATERIALIZED VIEW mv_order_summary;
243+
244+
-- Step 13: Scalability and Load Balancing
245+
-- Example: Implementing Sharding for Horizontal Scaling
246+
247+
-- Assume you have a table 'user_data' and want to shard it across multiple servers.
248+
CREATE TABLE user_data (
249+
user_id INT PRIMARY KEY,
250+
username VARCHAR(50) NOT NULL,
251+
email VARCHAR(100) NOT NULL
252+
);
253+
254+
-- Create a sharded table by distributing data based on the user_id range.
255+
-- Note: Sharding logic depends on the specific requirements and DBMS used.
256+
CREATE TABLE user_data_shard1 (LIKE user_data INCLUDING ALL) TABLESPACE ts1;
257+
CREATE TABLE user_data_shard2 (LIKE user_data INCLUDING ALL) TABLESPACE ts2;
258+
-- ... Create more shards as needed.
259+
260+
-- Implement a sharding mechanism to distribute data across shards based on user_id.
261+
262+
-- Step 14: Blockchain and Distributed Ledger Integration
263+
-- Example: Interacting with Blockchain Networks
264+
265+
-- Assume you have a table 'blockchain_data' to store data related to blockchain transactions.
266+
CREATE TABLE blockchain_data (
267+
transaction_id INT PRIMARY KEY,
268+
sender_address VARCHAR(100) NOT NULL,
269+
receiver_address VARCHAR(100) NOT NULL,
270+
amount DECIMAL(10, 2) NOT NULL
271+
);
272+
273+
-- Insert data into the 'blockchain_data' table to represent blockchain transactions.
274+
275+
-- Example: Query blockchain data to calculate the total transaction amount for a specific sender.
276+
SELECT
277+
sender_address,
278+
SUM(amount) AS total_sent_amount
279+
FROM blockchain_data
280+
WHERE sender_address = '0xabc...'; -- Replace with the actual sender address
281+
GROUP BY sender_address;
282+
283+
-- Step 15: Real-World Projects
284+
-- Continue working on complex projects to deepen your SQL expertise.
285+
286+
-- Example: Large-Scale Data Migration
287+
-- In a real-world project, you might encounter a scenario where a company wants to migrate its data from an old database system to a new one. You'll use SQL to design and execute the data migration process, ensuring data integrity and minimal downtime during the transition.
288+
289+
-- For Step 15, the example involves real-world projects, which can vary significantly based on specific requirements and business domains.
290+
291+
-- Congratulations! You have completed the Advanced Level SQL Script Guide.

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /