|
2 | 2 | import torch
|
3 | 3 | from torch.utils.data import DataLoader, random_split
|
4 | 4 | from torchvision import transforms
|
5 | | -from torchvision.datasets import MNIST |
| 5 | +from torchvision.datasets import MNIST, CIFAR10 |
6 | 6 |
|
7 | 7 |
|
8 | 8 | def get_mnist_dataloader(_mode: str = "train", batch_size: int = 32) -> DataLoader:
|
@@ -33,3 +33,36 @@ def get_mnist_dataloader(_mode: str = "train", batch_size: int = 32) -> DataLoad
|
33 | 33 | _dataset = MNIST("", train=False, download=True, transform=transform)
|
34 | 34 |
|
35 | 35 | return DataLoader(_dataset, batch_size=batch_size)
|
| 36 | + |
| 37 | + |
| 38 | +def get_cifar10_dataloader(_mode: str = "train", batch_size: int = 32) -> DataLoader: |
| 39 | + mean = (0.4914, 0.4822, 0.4465) |
| 40 | + std = (0.247, 0.243, 0.261) |
| 41 | + |
| 42 | + transform = transforms.Compose([ |
| 43 | + transforms.ToTensor(), |
| 44 | + transforms.Normalize(mean=mean, std=std), |
| 45 | + transforms.Lambda(lambda x: torch.flatten(x)), |
| 46 | + ]) |
| 47 | + if _mode == "train": |
| 48 | + _dataset = CIFAR10("CIFAR10", train=True, download=True, transform=transform) |
| 49 | + _dataset, _ = random_split( |
| 50 | + _dataset, |
| 51 | + ( |
| 52 | + int(len(_dataset) * 0.9), |
| 53 | + len(_dataset) - int(len(_dataset) * 0.9), |
| 54 | + ), |
| 55 | + ) |
| 56 | + elif _mode == "val": |
| 57 | + _dataset = CIFAR10("CIFAR10", train=True, download=True, transform=transform) |
| 58 | + _, _dataset = random_split( |
| 59 | + _dataset, |
| 60 | + ( |
| 61 | + int(len(_dataset) * 0.9), |
| 62 | + len(_dataset) - int(len(_dataset) * 0.9), |
| 63 | + ), |
| 64 | + ) |
| 65 | + elif _mode == "test": |
| 66 | + _dataset = CIFAR10("CIFAR10", train=False, download=True, transform=transform) |
| 67 | + |
| 68 | + return DataLoader(_dataset, batch_size=batch_size) |
0 commit comments