You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
*[Udacity: Deep Learning with PyTorch](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/Udacity-Deep-Learning-with-PyTorch)
69
+
<details>
70
+
<summary>展开查看</summary>
71
+
<pre>
72
+
<code>
70
73
* Part 1: Introduction to PyTorch and using tensors
71
74
* Part 2: Building fully-connected neural networks with PyTorch
72
75
* Part 3: How to train a fully-connected network with backpropagation on MNIST
@@ -75,7 +78,34 @@
75
78
* Part 6: How to save and load trained models
76
79
* Part 7: Load image data with torchvision, also data augmentation
77
80
* Part 8: Use transfer learning to train a state-of-the-art image classifier for dogs and cats
81
+
</code>
82
+
</pre>
83
+
</details>
84
+
*[PyTorch1.0-Zero-To-All](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/PyTorch-Zero-To-All-%5BPyTorch1.0%5D):Slides-newest from Google Drive
85
+
<details>
86
+
<summary>展开查看</summary>
87
+
<pre>
88
+
* Lecture 01_ Overview.pptx
89
+
* Lecture 02_ Linear Model.pptx
90
+
* Lecture 03_ Gradient Descent.pptx
91
+
* Lecture 04_ Back-propagation and PyTorch autograd.pptx
92
+
* Lecture 05_ Linear regression in PyTorch way.pptx
93
+
* Lecture 06_ Logistic Regression.pptx
94
+
* Lecture 07_ Wide _ Deep.pptx
95
+
* Lecture 08_ DataLoader.pptx
96
+
* Lecture 09_ Softmax Classifier.pptx
97
+
* Lecture 10_ Basic CNN.pptx
98
+
* Lecture 11_ Advanced CNN.pptx
99
+
* Lecture 12_ RNN.pptx
100
+
* Lecture 13_ RNN II.pptx
101
+
* Lecture 14_ Seq2Seq.pptx
102
+
* Lecture 15_ NSML, Smartest ML Platform.pptx
103
+
</pre>
104
+
</details>
78
105
*[Deep Learning Course Slides and Handout - fleuret.org](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/Deep-Learning-Course-Slides-and-Handout)
0 commit comments