Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 2b5e669

Browse files
committed
Update README.md
1 parent 1c74ef0 commit 2b5e669

File tree

1 file changed

+37
-27
lines changed

1 file changed

+37
-27
lines changed

‎README.md‎

Lines changed: 37 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,6 @@
1010
- [以下是一些独立的教程](#以下是一些独立的教程)
1111
- [1) PyTorch深度学习:60分钟入门与实战](#1-pytorch深度学习60分钟入门与实战)
1212
- [2) Learning PyTorch with Examples 用例子学习PyTorch](#2-learning-pytorch-with-examples-用例子学习pytorch)
13-
- [3) PyTorch1.0-Zero-To-All](#3-pytorch10-zero-to-all)
1413
- [How to run? 推荐的运行方式](#how-to-run-推荐的运行方式)
1514

1615
## PyTorch 1.0 tutorials and examples
@@ -67,6 +66,10 @@
6766
* 深度学习之Pytorch - 廖星宇.pdf
6867
* 深度学习之PyTorch实战计算机视觉 - 唐进民.pdf
6968
* [Udacity: Deep Learning with PyTorch](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/Udacity-Deep-Learning-with-PyTorch)
69+
<details>
70+
<summary>展开查看</summary>
71+
<pre>
72+
<code>
7073
* Part 1: Introduction to PyTorch and using tensors
7174
* Part 2: Building fully-connected neural networks with PyTorch
7275
* Part 3: How to train a fully-connected network with backpropagation on MNIST
@@ -75,7 +78,34 @@
7578
* Part 6: How to save and load trained models
7679
* Part 7: Load image data with torchvision, also data augmentation
7780
* Part 8: Use transfer learning to train a state-of-the-art image classifier for dogs and cats
81+
</code>
82+
</pre>
83+
</details>
84+
* [PyTorch1.0-Zero-To-All](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/PyTorch-Zero-To-All-%5BPyTorch1.0%5D):Slides-newest from Google Drive
85+
<details>
86+
<summary>展开查看</summary>
87+
<pre>
88+
* Lecture 01_ Overview.pptx
89+
* Lecture 02_ Linear Model.pptx
90+
* Lecture 03_ Gradient Descent.pptx
91+
* Lecture 04_ Back-propagation and PyTorch autograd.pptx
92+
* Lecture 05_ Linear regression in PyTorch way.pptx
93+
* Lecture 06_ Logistic Regression.pptx
94+
* Lecture 07_ Wide _ Deep.pptx
95+
* Lecture 08_ DataLoader.pptx
96+
* Lecture 09_ Softmax Classifier.pptx
97+
* Lecture 10_ Basic CNN.pptx
98+
* Lecture 11_ Advanced CNN.pptx
99+
* Lecture 12_ RNN.pptx
100+
* Lecture 13_ RNN II.pptx
101+
* Lecture 14_ Seq2Seq.pptx
102+
* Lecture 15_ NSML, Smartest ML Platform.pptx
103+
</pre>
104+
</details>
78105
* [Deep Learning Course Slides and Handout - fleuret.org](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/Deep-Learning-Course-Slides-and-Handout)
106+
<details>
107+
<summary>展开查看</summary>
108+
<pre>
79109
* 1-1-from-anns-to-deep-learning.pdf
80110
* 1-2-current-success.pdf
81111
* 1-3-what-is-happening.pdf
@@ -132,7 +162,8 @@
132162
* 11-1-RNN-basics.pdf
133163
* 11-2-LSTM-and-GRU.pdf
134164
* 11-3-word-embeddings-and-translation.pdf
135-
165+
</pre>
166+
</details>
136167

137168
## 以下是一些独立的教程
138169

@@ -210,30 +241,6 @@
210241

211242

212243

213-
214-
215-
### 3) [PyTorch1.0-Zero-To-All](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/PyTorch-Zero-To-All-%5BPyTorch1.0%5D)
216-
217-
* Slides-newest from Google Drive
218-
* Lecture 01_ Overview.pptx
219-
* Lecture 02_ Linear Model.pptx
220-
* Lecture 03_ Gradient Descent.pptx
221-
* Lecture 04_ Back-propagation and PyTorch autograd.pptx
222-
* Lecture 05_ Linear regression in PyTorch way.pptx
223-
* Lecture 06_ Logistic Regression.pptx
224-
* Lecture 07_ Wide _ Deep.pptx
225-
* Lecture 08_ DataLoader.pptx
226-
* Lecture 09_ Softmax Classifier.pptx
227-
* Lecture 10_ Basic CNN.pptx
228-
* Lecture 11_ Advanced CNN.pptx
229-
* Lecture 12_ RNN.pptx
230-
* Lecture 13_ RNN II.pptx
231-
* Lecture 14_ Seq2Seq.pptx
232-
* Lecture 15_ NSML, Smartest ML Platform.pptx
233-
234-
235-
236-
237244
## How to run? 推荐的运行方式
238245

239246
Some code in this repo is separated in blocks using `#%%`.
@@ -242,4 +249,7 @@ A block is as same as a cell in `Jupyter Notebook`. So editors/IDEs supporting t
242249
Such as:
243250
* [VSCode](Functionality) with [Microsoft Python extension](https://marketplace.visualstudio.com/items?itemName=ms-python.python)
244251
* [Spyder](https://pypi.org/project/spyder/) with [Anaconda](https://www.anaconda.com/)
245-
* [PyCharm](https://www.jetbrains.com/pycharm/)
252+
* [PyCharm](https://www.jetbrains.com/pycharm/)
253+
254+
255+

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /