Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 7108dce

Browse files
committed
solve 300.最长上升子序列
1 parent bb913a3 commit 7108dce

File tree

2 files changed

+120
-0
lines changed

2 files changed

+120
-0
lines changed

‎zh/300.最长上升子序列.2.java‎

Lines changed: 58 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,58 @@
1+
/*
2+
* @lc app=leetcode.cn id=300 lang=java
3+
*
4+
* [300] 最长上升子序列
5+
*
6+
* https://leetcode-cn.com/problems/longest-increasing-subsequence/description/
7+
*
8+
* algorithms
9+
* Medium (44.40%)
10+
* Likes: 818
11+
* Dislikes: 0
12+
* Total Accepted: 114.6K
13+
* Total Submissions: 256.2K
14+
* Testcase Example: '[10,9,2,5,3,7,101,18]'
15+
*
16+
* 给定一个无序的整数数组,找到其中最长上升子序列的长度。
17+
*
18+
* 示例:
19+
*
20+
* 输入: [10,9,2,5,3,7,101,18]
21+
* 输出: 4
22+
* 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
23+
*
24+
* 说明:
25+
*
26+
*
27+
* 可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
28+
* 你算法的时间复杂度应该为 O(n^2) 。
29+
*
30+
*
31+
* 进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?
32+
*
33+
*/
34+
35+
// @lc code=start
36+
class Solution {
37+
public int lengthOfLIS(int[] nums) {
38+
int[] dp = new int[nums.length];
39+
Arrays.fill(dp, 1);
40+
41+
for (int i = 1; i < nums.length; i++) {
42+
for (int j = 0; j < i; j++) {
43+
if (nums[j] < nums[i]) {
44+
dp[i] = Math.max(dp[i], dp[j] + 1);
45+
}
46+
}
47+
}
48+
49+
int max = 0;
50+
for (int i = 0; i < nums.length; i++) {
51+
max = Math.max(max, dp[i]);
52+
}
53+
54+
return max;
55+
}
56+
}
57+
// @lc code=end
58+

‎zh/300.最长上升子序列.java‎

Lines changed: 62 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,62 @@
1+
/*
2+
* @lc app=leetcode.cn id=300 lang=java
3+
*
4+
* [300] 最长上升子序列
5+
*
6+
* https://leetcode-cn.com/problems/longest-increasing-subsequence/description/
7+
*
8+
* algorithms
9+
* Medium (44.40%)
10+
* Likes: 818
11+
* Dislikes: 0
12+
* Total Accepted: 114.6K
13+
* Total Submissions: 256.2K
14+
* Testcase Example: '[10,9,2,5,3,7,101,18]'
15+
*
16+
* 给定一个无序的整数数组,找到其中最长上升子序列的长度。
17+
*
18+
* 示例:
19+
*
20+
* 输入: [10,9,2,5,3,7,101,18]
21+
* 输出: 4
22+
* 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
23+
*
24+
* 说明:
25+
*
26+
*
27+
* 可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
28+
* 你算法的时间复杂度应该为 O(n^2) 。
29+
*
30+
*
31+
* 进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?
32+
*
33+
*/
34+
35+
// @lc code=start
36+
class Solution {
37+
public int lengthOfLIS(int[] nums) {
38+
int[] tails = new int[nums.length];
39+
int res = 0;
40+
41+
for (int num : nums) {
42+
int i = 0, j = res;
43+
// 二分查找 tails 数组,找到第一个大于 num 的数字
44+
while (i < j) {
45+
int mid = i + (j - i) / 2;
46+
if (tails[mid] < num) {
47+
i = mid + 1;
48+
} else {
49+
j = mid;
50+
}
51+
}
52+
tails[i] = num;
53+
if (j == res) {
54+
res++;
55+
}
56+
}
57+
58+
return res;
59+
}
60+
}
61+
// @lc code=end
62+

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /