Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit f9195a2

Browse files
author
Algorithmica
authored
Add files via upload
1 parent 13bac8a commit f9195a2

File tree

1 file changed

+50
-0
lines changed

1 file changed

+50
-0
lines changed
Lines changed: 50 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,50 @@
1+
import sys
2+
sys.path.append("E:/New Folder/utils")
3+
4+
import classification_utils as cutils
5+
from sklearn import model_selection, linear_model
6+
7+
X, y = cutils.generate_linear_synthetic_data_classification(n_samples=1000, n_features=2, n_classes=2, weights=[0.8,0.2], class_sep=1.0)
8+
9+
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2, random_state=1)
10+
cutils.plot_data_2d_classification(X_train, y_train)
11+
12+
lr_estimator = linear_model.LogisticRegression()
13+
lr_grid = {'penalty':['l1', 'l2'], 'C':[0.01, 0.001, 0.1, 0.3, 0.5, 0.7, 1] }
14+
final_estimator = cutils.grid_search_best_model(lr_estimator, lr_grid, X_train, y_train, scoring='roc_auc')
15+
print(final_estimator.intercept_)
16+
print(final_estimator.coef_)
17+
cutils.plot_model_2d_classification(final_estimator, X_train, y_train)
18+
19+
final_estimator.predict_proba(X_test)
20+
cutils.performance_metrics_soft_binary_classification(final_estimator, X_test, y_test)
21+
22+
#imbalanced binary classification
23+
X, y = cutils.generate_linear_synthetic_data_classification(n_samples=1000, n_features=2, n_classes=2, weights=[0.05,0.95], class_sep=0.9)
24+
25+
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2, random_state=1)
26+
cutils.plot_data_2d_classification(X_train, y_train)
27+
28+
lr_estimator = linear_model.LogisticRegression()
29+
lr_grid = {'penalty':['l1', 'l2'], 'C':[0.01, 0.001, 0.1, 0.3, 0.5, 0.7, 1] }
30+
final_estimator = cutils.grid_search_best_model(lr_estimator, lr_grid, X_train, y_train, scoring='roc_auc')
31+
print(final_estimator.intercept_)
32+
print(final_estimator.coef_)
33+
cutils.plot_model_2d_classification(final_estimator, X_train, y_train)
34+
35+
cutils.performance_metrics_soft_binary_classification(final_estimator, X_test, y_test)
36+
37+
#imbalanced multi-class classification
38+
X, y = cutils.generate_linear_synthetic_data_classification(n_samples=1000, n_features=2, n_classes=3, weights=[0.6,0.3,0.1], class_sep=1.5)
39+
40+
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2, random_state=1)
41+
cutils.plot_data_2d_classification(X_train, y_train)
42+
43+
lr_estimator = linear_model.LogisticRegression()
44+
lr_grid = {'penalty':['l1', 'l2'], 'C':[0.01, 0.001, 0.1, 0.3, 0.5, 0.7, 1] }
45+
final_estimator = cutils.grid_search_best_model(lr_estimator, lr_grid, X_train, y_train, scoring='roc_auc')
46+
print(final_estimator.intercept_)
47+
print(final_estimator.coef_)
48+
cutils.plot_model_2d_classification(final_estimator, X_train, y_train)
49+
50+
cutils.performance_metrics_soft_multiclass_classification(final_estimator, X_test, y_test)

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /