Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit c961e6c

Browse files
author
Algorithmica
authored
Add files via upload
1 parent 3c57156 commit c961e6c

File tree

5 files changed

+111
-0
lines changed

5 files changed

+111
-0
lines changed
Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,20 @@
1+
import sys
2+
path = 'J://utils'
3+
sys.path.append(path)
4+
5+
import common_utils as utils
6+
import clustering_utils as cl_utils
7+
import classification_utils as cutils
8+
9+
X, y = cl_utils.generate_synthetic_data_2d_clusters(n_samples=300, n_centers=4, cluster_std=0.60)
10+
utils.plot_data_2d(X)
11+
12+
X, _ = cl_utils.generate_synthetic_data_3d_clusters(n_samples=500, n_centers=3, cluster_std=1.4)
13+
utils.plot_data_3d(X)
14+
15+
X, _ = cutils.generate_nonlinear_synthetic_data_classification2(n_samples=300)
16+
utils.plot_data_2d(X)
17+
18+
X, _ = cutils.generate_nonlinear_synthetic_data_classification3(n_samples=300)
19+
utils.plot_data_2d(X)
20+
Lines changed: 24 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,24 @@
1+
import sys
2+
path = 'J://utils'
3+
sys.path.append(path)
4+
5+
from sklearn import cluster
6+
import common_utils as utils
7+
import clustering_utils as cl_utils
8+
9+
X, _= cl_utils.generate_synthetic_data_2d_clusters(n_samples=300, n_centers=4, cluster_std=0.60)
10+
utils.plot_data_2d(X)
11+
12+
kmeans = cluster.KMeans(5)
13+
kmeans.fit(X)
14+
print(kmeans.cluster_centers_)
15+
print(kmeans.labels_)
16+
cl_utils.plot_model_2d_clustering(kmeans, X)
17+
18+
scoring = 's_score'
19+
kmeans_estimator = cluster.KMeans()
20+
kmeans_grid = {'n_clusters':list(range(3,9))}
21+
kmeans_final_model = cl_utils.grid_search_best_model_clustering(kmeans_estimator, kmeans_grid, X, scoring=scoring)
22+
print(kmeans_final_model.labels_)
23+
print(kmeans_final_model.cluster_centers_)
24+
cl_utils.plot_model_2d_clustering(kmeans_final_model, X)
Lines changed: 26 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,26 @@
1+
import sys
2+
path = 'J://utils'
3+
sys.path.append(path)
4+
5+
from sklearn import cluster, manifold
6+
import common_utils as utils
7+
import clustering_utils as cl_utils
8+
import classification_utils as cutils
9+
10+
X, _ = cutils.generate_nonlinear_synthetic_data_classification2(n_samples=300)
11+
utils.plot_data_2d(X)
12+
13+
X, _ = cutils.generate_nonlinear_synthetic_data_classification3(n_samples=300)
14+
utils.plot_data_2d(X)
15+
16+
tsne = manifold.TSNE()
17+
X_tsne = tsne.fit_transform(X)
18+
utils.plot_data_2d(X_tsne)
19+
20+
scoring = 's_score'
21+
kmeans_estimator = cluster.KMeans()
22+
kmeans_grid = {'n_clusters':list(range(2,7))}
23+
kmeans_final_model = cl_utils.grid_search_best_model_clustering(kmeans_estimator, kmeans_grid, X, scoring=scoring)
24+
print(kmeans_final_model.labels_)
25+
print(kmeans_final_model.cluster_centers_)
26+
cl_utils.plot_model_2d_clustering(kmeans_final_model, X)
Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
import sys
2+
path = 'J://utils'
3+
sys.path.append(path)
4+
5+
from sklearn import cluster
6+
import common_utils as utils
7+
import clustering_utils as cl_utils
8+
import classification_utils as cutils
9+
10+
X, _= cl_utils.generate_synthetic_data_2d_clusters(n_samples=300, n_centers=4, cluster_std=0.60)
11+
utils.plot_data_2d(X)
12+
13+
X, _ = cutils.generate_nonlinear_synthetic_data_classification2(n_samples=300)
14+
utils.plot_data_2d(X)
15+
16+
X, _ = cutils.generate_nonlinear_synthetic_data_classification3(n_samples=300)
17+
utils.plot_data_2d(X)
18+
19+
scoring = 's_score'
20+
agg_estimator = cluster.AgglomerativeClustering()
21+
agg_grid = {'linkage':['ward', 'complete', 'average'], 'n_clusters':list(range(2,7))}
22+
agg_final_model = cl_utils.grid_search_best_model_clustering(agg_estimator, agg_grid, X, scoring=scoring)
23+
cl_utils.plot_model_2d_clustering(agg_final_model, X)
Lines changed: 18 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,18 @@
1+
import sys
2+
path = 'E://utils'
3+
sys.path.append(path)
4+
5+
from sklearn import cluster, mixture
6+
import common_utils as utils
7+
import clustering_utils as cl_utils
8+
9+
X, _= cl_utils.generate_synthetic_data_2d_clusters(n_samples=300, n_centers=4, cluster_std=0.60)
10+
utils.plot_data_2d(X)
11+
12+
scoring = 's_score'
13+
gmm_estimator = mixture.GaussianMixture(n_components=3)
14+
gmm_grid = {'n_components':list(range(10,40))}
15+
gmm_estimator.fit(X)
16+
gmm_estimator.predict(X)
17+
gmm_final_model = cl_utils.grid_search_best_model_clustering(gmm_estimator, gmm_grid, X, scoring=scoring)
18+
cl_utils.plot_model_2d_clustering(gmm_estimator, X)

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /