Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 585c863

Browse files
author
Algorithmica
authored
Add files via upload
1 parent 9ba6cc4 commit 585c863

File tree

1 file changed

+23
-22
lines changed

1 file changed

+23
-22
lines changed
Lines changed: 23 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,9 @@
11
import sys
22
sys.path.append("E:/New Folder/utils")
33

4+
import kernel_utils as kutils
45
import classification_utils as cutils
5-
from sklearn import model_selection, linear_model, svm, preprocessing, pipeline
6+
from sklearn import model_selection, linear_model, svm, preprocessing, pipeline, neural_network
67

78

89
#2-d classification pattern
@@ -15,40 +16,40 @@
1516
cutils.plot_data_2d_classification(X_train, y_train)
1617

1718
#perceptron algorithm
18-
stages = [
19-
('features', preprocessing.PolynomialFeatures()),
20-
('clf', linear_model.Perceptron(max_iter=1000))
21-
]
19+
stages = [('features', kutils.KernelTransformer('rbf')) ,
20+
('clf', linear_model.Perceptron(max_iter=1000))
21+
]
2222
perceptron_pipeline = pipeline.Pipeline(stages)
23-
perceptron_pipeline_grid = {'clf__penalty':['l1'], 'clf__alpha':[0, 0.1, 0.3, 0.5], 'features__degree':[2,3,5,10]}
23+
perceptron_pipeline_grid = {'features__gamma':[0.1, 0.01, 0.2]}
2424
pipeline_object = cutils.grid_search_best_model(perceptron_pipeline, perceptron_pipeline_grid, X_train, y_train)
2525
final_estimator = pipeline_object.named_steps['clf']
2626
print(final_estimator.intercept_)
2727
print(final_estimator.coef_)
2828
cutils.plot_model_2d_classification(pipeline_object, X_train, y_train)
2929

3030
#logistic regression algorithm
31-
stages = [
32-
('features', preprocessing.PolynomialFeatures()),
33-
('clf', linear_model.LogisticRegression())
34-
]
31+
stages = [('features', kutils.KernelTransformer('rbf')) ,
32+
('clf', linear_model.LogisticRegression())
33+
]
34+
3535
lr_pipeline = pipeline.Pipeline(stages)
36-
lr_pipeline_grid = {'clf__penalty':['l1'], 'clf__C':[0.01, 0.1, 0.3, 0.5], 'features__degree':[2,3,5,10]}
36+
lr_pipeline_grid = {'features__gamma':[0.1, 1, 5,10]}
3737
pipeline_object = cutils.grid_search_best_model(lr_pipeline, lr_pipeline_grid, X_train, y_train)
3838
final_estimator = pipeline_object.named_steps['clf']
3939
print(final_estimator.intercept_)
40-
print(final_estimator.coef_)
4140
cutils.plot_model_2d_classification(pipeline_object, X_train, y_train)
4241

4342
#linear svm algorithm
44-
stages = [
45-
('features', preprocessing.PolynomialFeatures()),
46-
('clf', svm.LinearSVC())
47-
]
48-
svm_pipeline = pipeline.Pipeline(stages)
49-
svm_pipeline_grid = {'clf__penalty':['l2'], 'clf__C':[0.01, 0.1, 0.3, 0.5], 'features__degree':[2,3,5,10, 50, 100]}
50-
pipeline_object = cutils.grid_search_best_model(svm_pipeline, svm_pipeline_grid, X_train, y_train)
51-
final_estimator = pipeline_object.named_steps['clf']
43+
kernel_svm_estimator = svm.SVC(kernel='rbf')
44+
kernel_svm_grid = {'gamma':[0.01, 0.1, 1, 2, 5, 10] }
45+
final_estimator = cutils.grid_search_best_model(kernel_svm_estimator, kernel_svm_grid, X_train, y_train)
5246
print(final_estimator.intercept_)
53-
print(final_estimator.coef_)
54-
cutils.plot_model_2d_classification(pipeline_object, X_train, y_train)
47+
cutils.plot_model_2d_classification(final_estimator, X_train, y_train)
48+
49+
#artifical neural network
50+
ann_estimator = neural_network.MLPClassifier()
51+
ann_grid = {'hidden_layer_sizes':[(3, 4), (10, 20)] }
52+
final_estimator = cutils.grid_search_best_model(ann_estimator, ann_grid, X_train, y_train)
53+
print(final_estimator.intercepts_)
54+
print(final_estimator.coefs_)
55+
cutils.plot_model_2d_classification(final_estimator, X_train, y_train)

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /