Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 56c2a67

Browse files
author
Algorithmica
authored
Add files via upload
1 parent 40ba421 commit 56c2a67

File tree

1 file changed

+50
-0
lines changed

1 file changed

+50
-0
lines changed
Lines changed: 50 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,50 @@
1+
import sys
2+
sys.path.append("E:/New folder/utils")
3+
4+
import classification_utils as cutils
5+
from sklearn import model_selection, linear_model, svm
6+
7+
#2-d classification pattern
8+
X, y = cutils.generate_linear_synthetic_data_classification(n_samples=1000, n_features=2, n_classes=2, weights=[0.5, 0.5], class_sep=2)
9+
X, y = cutils.generate_nonlinear_synthetic_data_classification2(n_samples=1000, noise=0.1)
10+
cutils.plot_data_2d_classification(X, y)
11+
12+
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2, random_state=1)
13+
cutils.plot_data_2d_classification(X_train, y_train)
14+
15+
#perceptron algorithm
16+
perceptron_estimator = linear_model.Perceptron()
17+
perceptron_grid = {'penalty':['l1', 'l2'], 'alpha':[0, 0.01, 0.02, 0.1, 0.3, 0.5, 0.7, 1] }
18+
final_estimator = cutils.grid_search_best_model(perceptron_estimator, perceptron_grid, X_train, y_train)
19+
print(final_estimator.intercept_)
20+
print(final_estimator.coef_)
21+
cutils.plot_model_2d_classification(final_estimator, X_train, y_train)
22+
23+
#predict distances and classes for test data
24+
print(final_estimator.decision_function(X_test))
25+
print(final_estimator.predict(X_test))
26+
27+
#logistic regression algorithm
28+
lr_estimator = linear_model.LogisticRegression()
29+
lr_grid = {'penalty':['l1', 'l2'], 'C':[0.01, 0.001, 0.1, 0.3, 0.5, 0.7, 1] }
30+
final_estimator = cutils.grid_search_best_model(lr_estimator, lr_grid, X_train, y_train)
31+
print(final_estimator.intercept_)
32+
print(final_estimator.coef_)
33+
cutils.plot_model_2d_classification(final_estimator, X_train, y_train)
34+
35+
#predict distances and classes for test data
36+
print(final_estimator.decision_function(X_test))
37+
print(final_estimator.predict(X_test))
38+
print(final_estimator.predict_proba(X_test))
39+
40+
#linear svm algorithm
41+
lsvm_estimator = svm.LinearSVC()
42+
lsvm_grid = {'penalty':['l2'], 'C':[0.1, 0.3, 0.5, 0.7, 1, 10] }
43+
final_estimator = cutils.grid_search_best_model(lsvm_estimator, lsvm_grid, X_train, y_train)
44+
print(final_estimator.intercept_)
45+
print(final_estimator.coef_)
46+
cutils.plot_model_2d_classification(final_estimator, X_train, y_train)
47+
48+
#predict distances and classes for test data
49+
print(final_estimator.decision_function(X_test))
50+
print(final_estimator.predict(X_test))

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /