Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 0f0004c

Browse files
author
Algorithmica
authored
Add files via upload
1 parent c9cbe7e commit 0f0004c

File tree

3 files changed

+164
-0
lines changed

3 files changed

+164
-0
lines changed
Lines changed: 70 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,70 @@
1+
import sys
2+
path = 'I://New Folder//utils'
3+
sys.path.append(path)
4+
import common_utils as utils
5+
import regression_utils as rutils
6+
from sklearn import metrics, linear_model, svm, model_selection
7+
8+
scoring = metrics.make_scorer(rutils.rmse, greater_is_better=False)
9+
10+
#linear pattern in 2d
11+
X, y = rutils.generate_linear_synthetic_data_regression(n_samples=100, n_features=1,
12+
n_informative=1,
13+
noise = 200)
14+
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.1, random_state=1)
15+
rutils.plot_data_2d_regression(X_train, y_train)
16+
17+
linear_estimator = linear_model.LinearRegression()
18+
linear_grid = {'normalize': [False]}
19+
final_linear_model = utils.grid_search_best_model(linear_estimator, linear_grid, X_train, y_train, scoring = scoring)
20+
print(final_linear_model.coef_)
21+
print(final_linear_model.intercept_)
22+
rutils.plot_model_2d_regression(final_linear_model, X_train, y_train)
23+
rutils.regression_performance(final_linear_model, X_test, y_test)
24+
25+
lasso_estimator = linear_model.Lasso(max_iter=5000)
26+
lasso_grid = {'alpha': [0, 0.1, 0.5, 1.0, 10]}
27+
final_lasso_model = utils.grid_search_best_model(lasso_estimator, lasso_grid, X_train, y_train, scoring = scoring)
28+
print(final_lasso_model.coef_)
29+
print(final_lasso_model.intercept_)
30+
rutils.plot_model_2d_regression(final_lasso_model, X_train, y_train)
31+
rutils.regression_performance(final_lasso_model, X_test, y_test)
32+
33+
ridge_estimator = linear_model.Ridge()
34+
ridge_grid = {'alpha': [0, 0.1, 0.5, 1.0, 10]}
35+
final_ridge_model = utils.grid_search_best_model(ridge_estimator, ridge_grid, X_train, y_train, scoring = scoring)
36+
print(final_ridge_model.coef_)
37+
print(final_ridge_model.intercept_)
38+
rutils.plot_model_2d_regression(final_ridge_model, X_train, y_train)
39+
rutils.regression_performance(final_ridge_model, X_test, y_test)
40+
41+
svm_estimator = svm.LinearSVR()
42+
svm_grid = {'C':[0.1, 0.3, 0.5, 0.7, 1, 10] }
43+
final_svm_model = utils.grid_search_best_model(svm_estimator, svm_grid, X_train, y_train, scoring = scoring)
44+
print(final_svm_model.coef_)
45+
print(final_svm_model.intercept_)
46+
rutils.plot_model_2d_regression(final_svm_model, X_train, y_train)
47+
rutils.regression_performance(final_svm_model, X_test, y_test)
48+
49+
#linear pattern in 3d
50+
X, y = rutils.generate_linear_synthetic_data_regression(n_samples=200, n_features=2,
51+
n_informative=2,
52+
noise = 10)
53+
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.1, random_state=1)
54+
rutils.plot_data_3d_regression(X_train, y_train)
55+
56+
linear_estimator = linear_model.LinearRegression()
57+
linear_grid = {'normalize': [True, False]}
58+
final_linear_model = utils.grid_search_best_model(linear_estimator, linear_grid, X_train, y_train, scoring=scoring)
59+
print(final_linear_model.coef_)
60+
print(final_linear_model.intercept_)
61+
rutils.plot_model_3d_regression(final_linear_model, X_train, y_train)
62+
rutils.regression_performance(final_linear_model, X_test, y_test)
63+
64+
svm_estimator = svm.LinearSVR()
65+
svm_grid = {'C':[0.1, 0.3, 0.5, 0.7, 1, 10] }
66+
final_svm_model = utils.grid_search_best_model(svm_estimator, svm_grid, X_train, y_train, scoring = scoring)
67+
print(final_svm_model.coef_)
68+
print(final_svm_model.intercept_)
69+
rutils.plot_model_3d_regression(final_svm_model, X_train, y_train)
70+
rutils.regression_performance(final_svm_model, X_test, y_test)
Lines changed: 44 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,44 @@
1+
import sys
2+
path = 'I://New Folder//utils'
3+
sys.path.append(path)
4+
import common_utils as utils
5+
import regression_utils as rutils
6+
from sklearn import metrics, tree, neighbors, model_selection, ensemble
7+
8+
scoring = metrics.make_scorer(rutils.rmse, greater_is_better=False)
9+
10+
#linear pattern in 2d
11+
X, y = rutils.generate_nonlinear_synthetic_data_regression(n_samples=200, n_features=1)
12+
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.1, random_state=1)
13+
rutils.plot_data_2d_regression(X_train, y_train)
14+
15+
dt_estimator = tree.DecisionTreeRegressor()
16+
dt_grid = {'max_depth':list(range(1,9)) }
17+
final_dt_model = utils.grid_search_best_model(dt_estimator, dt_grid, X_train, y_train, scoring = scoring)
18+
rutils.plot_model_2d_regression(final_dt_model, X_train, y_train)
19+
rutils.regression_performance(final_dt_model, X_test, y_test)
20+
21+
knn_estimator = neighbors.KNeighborsRegressor()
22+
knn_grid = {'n_neighbors':list(range(1,21)), 'weights':['uniform', 'distance'] }
23+
final_knn_model = utils.grid_search_best_model(knn_estimator,knn_grid, X_train, y_train, scoring = scoring)
24+
rutils.plot_model_2d_regression(final_knn_model, X_train, y_train)
25+
rutils.regression_performance(final_knn_model, X_test, y_test)
26+
27+
rf_estimator = ensemble.RandomForestRegressor()
28+
rf_grid = {'n_estimators':list(range(10,200,50)), 'max_depth':list(range(3,6))}
29+
final_rf_model = utils.grid_search_best_model(rf_estimator, rf_grid, X_train, y_train, scoring = scoring)
30+
rutils.plot_model_2d_regression(final_rf_model, X_train, y_train)
31+
rutils.regression_performance(final_rf_model, X_test, y_test)
32+
33+
et_estimator = ensemble.ExtraTreesRegressor()
34+
et_grid = {'n_estimators':list(range(10,200,20)), 'max_depth':list(range(3,6))}
35+
final_et_model = utils.grid_search_best_model(et_estimator, et_grid, X_train, y_train, scoring = scoring)
36+
rutils.plot_model_2d_regression(final_et_model, X_train, y_train)
37+
rutils.regression_performance(final_et_model, X_test, y_test)
38+
39+
gb_estimator = ensemble.GradientBoostingRegressor()
40+
gb_grid = {'n_estimators':list(range(10,100,40)), 'max_depth':list(range(3,5)), 'learning_rate':[0.1,0.5]}
41+
final_gb_model = utils.grid_search_best_model(gb_estimator, gb_grid, X_train, y_train, scoring = scoring)
42+
rutils.plot_model_2d_regression(final_gb_model, X_train, y_train)
43+
rutils.regression_performance(final_gb_model, X_test, y_test)
44+
Lines changed: 50 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,50 @@
1+
import sys
2+
path = 'I://New Folder//utils'
3+
sys.path.append(path)
4+
import common_utils as utils
5+
import kernel_utils as kutils
6+
import regression_utils as rutils
7+
from sklearn import metrics, model_selection, linear_model, preprocessing, pipeline, kernel_ridge, svm
8+
9+
scoring = metrics.make_scorer(rutils.rmse, greater_is_better=False)
10+
11+
#linear pattern in 2d
12+
X, y = rutils.generate_nonlinear_synthetic_data_regression(n_samples=200, n_features=1)
13+
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.1, random_state=1)
14+
rutils.plot_data_2d_regression(X_train, y_train)
15+
16+
lr_pipeline = pipeline.Pipeline([
17+
('features', preprocessing.PolynomialFeatures()),
18+
('reg', linear_model.LinearRegression())
19+
])
20+
lr_pipeline_grid = {'features__degree':[2,3,5,10]}
21+
pipeline_object = utils.grid_search_best_model(lr_pipeline, lr_pipeline_grid, X_train, y_train, scoring = scoring)
22+
final_linear_model = pipeline_object.named_steps['reg']
23+
print(final_linear_model.coef_)
24+
print(final_linear_model.intercept_)
25+
rutils.plot_model_2d_regression(pipeline_object, X_train, y_train)
26+
rutils.regression_performance(pipeline_object, X_test, y_test)
27+
28+
lr_pipeline = pipeline.Pipeline([
29+
('features', kutils.GaussianFeatures() ),
30+
('reg', linear_model.LinearRegression())
31+
])
32+
lr_pipeline_grid = {'features__n_centres':[15, 20, 30, 36] }
33+
pipeline_object = utils.grid_search_best_model(lr_pipeline, lr_pipeline_grid, X_train, y_train, scoring = scoring)
34+
final_linear_model = pipeline_object.named_steps['reg']
35+
print(final_linear_model.coef_)
36+
print(final_linear_model.intercept_)
37+
rutils.plot_model_2d_regression(pipeline_object, X_train, y_train)
38+
rutils.regression_performance(pipeline_object, X_test, y_test)
39+
40+
kernel_lr = kernel_ridge.KernelRidge(kernel="rbf")
41+
kernel_lr_grid = {'alpha':[0.0001, 0.01, 0.05, 0.2, 0.5, 1], 'gamma':[0.01, 0.1, 1, 2, 3, 4, 5, 10]}
42+
final_kernel_lr_model = utils.grid_search_best_model(kernel_lr, kernel_lr_grid, X_train, y_train, scoring = scoring)
43+
rutils.plot_model_2d_regression(final_kernel_lr_model, X_train, y_train)
44+
rutils.regression_performance(final_kernel_lr_model, X_test, y_test)
45+
46+
kernel_svm = svm.SVR(kernel="rbf")
47+
kernel_svm_grid = {'C':[0.2, 0.5, 10, 20, 50, 100], 'gamma':[0.01, 0.1, 1, 2, 3, 4, 5, 10]}
48+
final_kernel_svm_model = utils.grid_search_best_model(kernel_svm, kernel_svm_grid, X_train, y_train, scoring = scoring)
49+
rutils.plot_model_2d_regression(final_kernel_svm_model, X_train, y_train)
50+
rutils.regression_performance(final_kernel_svm_model, X_test, y_test)

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /