Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 0bc4d53

Browse files
author
Algorithmica
authored
Add files via upload
1 parent e996851 commit 0bc4d53

File tree

1 file changed

+25
-0
lines changed
  • 2019-october/8.geometrical viz - classification algorithms

1 file changed

+25
-0
lines changed
Lines changed: 25 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,25 @@
1+
import sys
2+
sys.path.append("E:/New Folder/utils")
3+
4+
import classification_utils as cutils
5+
from sklearn import model_selection, naive_bayes, preprocessing
6+
import seaborn as sns
7+
8+
#2-d classification pattern
9+
X, y = cutils.generate_linear_synthetic_data_classification(n_samples=1000, n_features=2, n_classes=2, weights=[0.5, 0.5], class_sep=2)
10+
X, y = cutils.generate_nonlinear_synthetic_data_classification2(n_samples=1000, noise=0.1)
11+
cutils.plot_data_2d_classification(X, y)
12+
13+
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2, random_state=1)
14+
cutils.plot_data_2d_classification(X_train, y_train)
15+
16+
sns.distplot(X_train[:,0], hist=False)
17+
sns.distplot(X_train[:,1], hist=False)
18+
19+
#grid search for parameter values
20+
gnb_estimator = naive_bayes.GaussianNB()
21+
gnb_grid = {'priors':[None] }
22+
final_estimator = cutils.grid_search_best_model(gnb_estimator, gnb_grid, X_train, y_train)
23+
cutils.plot_model_2d_classification(final_estimator, X_train, y_train)
24+
25+
final_estimator.predict_proba(X_test)

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /