Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Adapt performance degrades when using several consecuitive times #133

Open
@mmorsy1981

Description

I defined the following DANN models. The DANN model starts performing well, then the accuracy drops (under 0.1 for some cases) for both unadapted and adapted models. Can you explain this behavior and how to handle it. @antoinedemathelin @GRichard513 @AlejandrodelaConcha @BastienZim @atiqm

`def get_encoder():
inp = Input(shape=np.expand_dims(XA_env,-1).shape[1:], name="Signal_Stack")
x = BatchNormalization()(inp)
x = Dropout(0.2)(x)
x = Conv1D(H.shape[1], H.shape[-1], use_bias=False, padding='same', name='Conv1D_L0')(x)
x = Activation('tanh')(x)
x = GlobalMaxPooling1D()(x)
x = Dense(x.shape[-1], activation='relu')(x)
model = Model(inputs=[inp], outputs=[x])
return model

enc_out_shape = get_encoder().output_shape

def get_task():
inp = Input(shape= enc_out_shape[-1], name="Signal_Stack")
x = Dense(inp.shape[-1], activation='relu')(inp)
x = Dropout(0.2)(x)
x = Dense(num_classes, activation='softmax', name = 'OutputLayer')(x)
model = Model(inputs=[inp], outputs=[x])
return model

def get_discriminator():
inp = Input(shape= enc_out_shape[-1], name="Signal_Stack")
x = Dense(inp.shape[-1], activation='relu')(inp)
x = Dropout(0.2)(x)
x = Dense(1, activation='sigmoid')(x)
model = Model(inputs=[inp], outputs=[x])
return model

for i in range(4):
for j in range(4):
DANN_model = DANN(encoder = get_encoder(), discriminator = get_discriminator(), task = get_task(), lambda_=0.5)
DANN_model.compile(loss='categorical_crossentropy', optimizer=Adam(0.001), metrics=["acc"])
DANN_model.fit(X = X[i], y = y[i], Xt = X[j], batch_size=32, epochs=100, shuffle=True)
#X and y denote a partitioned dataset with domain shift between various partitions
print(i ,j, DANN_model.score(X[i], y[i], DANN_model.score(X[j], y[j]) `

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

      Relationships

      None yet

      Development

      No branches or pull requests

      Issue actions

        AltStyle によって変換されたページ (->オリジナル) /