|
| 1 | +#!/usr/bin/env python |
| 2 | +# -*- coding: utf-8 -*- |
| 3 | +import re |
| 4 | +import sys |
| 5 | +import copy |
| 6 | +import time |
| 7 | +import argparse |
| 8 | + |
| 9 | +import cv2 as cv |
| 10 | +import numpy as np |
| 11 | +from ultralytics import YOLO |
| 12 | + |
| 13 | + |
| 14 | +def get_args(): |
| 15 | + parser = argparse.ArgumentParser() |
| 16 | + |
| 17 | + parser.add_argument("--device", default="sample_movie/bird.mp4") |
| 18 | + parser.add_argument("--width", help='cap width', type=int, default=960) |
| 19 | + parser.add_argument("--height", help='cap height', type=int, default=540) |
| 20 | + |
| 21 | + parser.add_argument('--use_mil', action='store_true') |
| 22 | + parser.add_argument('--use_goturn', action='store_true') |
| 23 | + parser.add_argument('--use_dasiamrpn', action='store_true') |
| 24 | + parser.add_argument('--use_csrt', action='store_true') |
| 25 | + parser.add_argument('--use_kcf', action='store_true') |
| 26 | + parser.add_argument('--use_boosting', action='store_true') |
| 27 | + parser.add_argument('--use_mosse', action='store_true') |
| 28 | + parser.add_argument('--use_medianflow', action='store_true') |
| 29 | + parser.add_argument('--use_tld', action='store_true') |
| 30 | + parser.add_argument('--use_nano', action='store_true') |
| 31 | + parser.add_argument('--use_vit', action='store_true') |
| 32 | + |
| 33 | + args = parser.parse_args() |
| 34 | + |
| 35 | + return args |
| 36 | + |
| 37 | + |
| 38 | +def isint(s): |
| 39 | + p = '[-+]?\d+' |
| 40 | + return True if re.fullmatch(p, s) else False |
| 41 | + |
| 42 | + |
| 43 | +def detect_objects(frame, model): |
| 44 | + """ |
| 45 | + Object detection using YOLOv8. |
| 46 | + """ |
| 47 | + # Perform detection |
| 48 | + results = model(frame) |
| 49 | + |
| 50 | + # Extract bounding boxes |
| 51 | + bboxes = [] |
| 52 | + for result in results: |
| 53 | + for box in result.boxes: |
| 54 | + x1, y1, x2, y2 = box.xyxy[0] # Get the bounding box coordinates |
| 55 | + bboxes.append((int(x1), int(y1), int(x2 - x1), int(y2 - y1))) |
| 56 | + |
| 57 | + return bboxes |
| 58 | + |
| 59 | + |
| 60 | +def initialize_tracker_list(window_name, image, tracker_algorithm_list, detected_bboxes): |
| 61 | + tracker_list = [] |
| 62 | + |
| 63 | + # Tracker list generation |
| 64 | + for tracker_algorithm in tracker_algorithm_list: |
| 65 | + for bbox in detected_bboxes: |
| 66 | + tracker = None |
| 67 | + if tracker_algorithm == 'MIL': |
| 68 | + tracker = cv.TrackerMIL_create() |
| 69 | + if tracker_algorithm == 'GOTURN': |
| 70 | + params = cv.TrackerGOTURN_Params() |
| 71 | + params.modelTxt = "model/GOTURN/goturn.prototxt" |
| 72 | + params.modelBin = "model/GOTURN/goturn.caffemodel" |
| 73 | + tracker = cv.TrackerGOTURN_create(params) |
| 74 | + if tracker_algorithm == 'DaSiamRPN': |
| 75 | + params = cv.TrackerDaSiamRPN_Params() |
| 76 | + params.model = "model/DaSiamRPN/dasiamrpn_model.onnx" |
| 77 | + params.kernel_r1 = "model/DaSiamRPN/dasiamrpn_kernel_r1.onnx" |
| 78 | + params.kernel_cls1 = "model/DaSiamRPN/dasiamrpn_kernel_cls1.onnx" |
| 79 | + tracker = cv.TrackerDaSiamRPN_create(params) |
| 80 | + if tracker_algorithm == 'Nano': |
| 81 | + params = cv.TrackerNano_Params() |
| 82 | + params.backbone = "model/nanotrackv2/nanotrack_backbone_sim.onnx" |
| 83 | + params.neckhead = "model/nanotrackv2/nanotrack_head_sim.onnx" |
| 84 | + tracker = cv.TrackerNano_create(params) |
| 85 | + if tracker_algorithm == 'Vit': |
| 86 | + params = cv.TrackerVit_Params() |
| 87 | + params.net = "model/vit/object_tracking_vittrack_2023sep.onnx" |
| 88 | + tracker = cv.TrackerVit_create(params) |
| 89 | + if tracker_algorithm == 'CSRT': |
| 90 | + tracker = cv.TrackerCSRT_create() |
| 91 | + if tracker_algorithm == 'KCF': |
| 92 | + tracker = cv.TrackerKCF_create() |
| 93 | + if tracker_algorithm == 'Boosting': |
| 94 | + tracker = cv.legacy_TrackerBoosting.create() |
| 95 | + if tracker_algorithm == 'MOSSE': |
| 96 | + tracker = cv.legacy_TrackerMOSSE.create() |
| 97 | + if tracker_algorithm == 'MedianFlow': |
| 98 | + tracker = cv.legacy_TrackerMedianFlow.create() |
| 99 | + if tracker_algorithm == 'TLD': |
| 100 | + tracker = cv.legacy_TrackerTLD.create() |
| 101 | + |
| 102 | + if tracker is not None: |
| 103 | + tracker.init(image, bbox) |
| 104 | + tracker_list.append(tracker) |
| 105 | + |
| 106 | + return tracker_list |
| 107 | + |
| 108 | + |
| 109 | +def main(): |
| 110 | + color_list = [ |
| 111 | + [255, 0, 0], # blue |
| 112 | + [255, 255, 0], # aqua |
| 113 | + [0, 255, 0], # lime |
| 114 | + [128, 0, 128], # purple |
| 115 | + [0, 0, 255], # red |
| 116 | + [255, 0, 255], # fuchsia |
| 117 | + [0, 128, 0], # green |
| 118 | + [128, 128, 0], # teal |
| 119 | + [0, 0, 128], # maroon |
| 120 | + [0, 128, 128], # olive |
| 121 | + [0, 255, 255], # yellow |
| 122 | + ] |
| 123 | + |
| 124 | + # Parse arguments ######################################################## |
| 125 | + args = get_args() |
| 126 | + |
| 127 | + cap_device = args.device |
| 128 | + cap_width = args.width |
| 129 | + cap_height = args.height |
| 130 | + |
| 131 | + use_mil = args.use_mil |
| 132 | + use_goturn = args.use_goturn |
| 133 | + use_dasiamrpn = args.use_dasiamrpn |
| 134 | + use_csrt = args.use_csrt |
| 135 | + use_kcf = args.use_kcf |
| 136 | + use_boosting = args.use_boosting |
| 137 | + use_mosse = args.use_mosse |
| 138 | + use_medianflow = args.use_medianflow |
| 139 | + use_tld = args.use_tld |
| 140 | + use_nano = args.use_nano |
| 141 | + use_vit = args.use_vit |
| 142 | + |
| 143 | + # Tracker algorithm selection ############################################ |
| 144 | + tracker_algorithm_list = [] |
| 145 | + if use_mil: |
| 146 | + tracker_algorithm_list.append('MIL') |
| 147 | + if use_goturn: |
| 148 | + tracker_algorithm_list.append('GOTURN') |
| 149 | + if use_dasiamrpn: |
| 150 | + tracker_algorithm_list.append('DaSiamRPN') |
| 151 | + if use_csrt: |
| 152 | + tracker_algorithm_list.append('CSRT') |
| 153 | + if use_kcf: |
| 154 | + tracker_algorithm_list.append('KCF') |
| 155 | + if use_boosting: |
| 156 | + tracker_algorithm_list.append('Boosting') |
| 157 | + if use_mosse: |
| 158 | + tracker_algorithm_list.append('MOSSE') |
| 159 | + if use_medianflow: |
| 160 | + tracker_algorithm_list.append('MedianFlow') |
| 161 | + if use_tld: |
| 162 | + tracker_algorithm_list.append('TLD') |
| 163 | + if use_nano: |
| 164 | + tracker_algorithm_list.append('Nano') |
| 165 | + if use_vit: |
| 166 | + tracker_algorithm_list.append('Vit') |
| 167 | + |
| 168 | + if len(tracker_algorithm_list) == 0: |
| 169 | + tracker_algorithm_list.append('DaSiamRPN') |
| 170 | + print(tracker_algorithm_list) |
| 171 | + |
| 172 | + # Camera setup ########################################################### |
| 173 | + if isint(cap_device): |
| 174 | + cap_device = int(cap_device) |
| 175 | + cap = cv.VideoCapture(cap_device) |
| 176 | + cap.set(cv.CAP_PROP_FRAME_WIDTH, cap_width) |
| 177 | + cap.set(cv.CAP_PROP_FRAME_HEIGHT, cap_height) |
| 178 | + |
| 179 | + # Load YOLOv8 model ###################################################### |
| 180 | + model = YOLO(r"D:\pycharm_projects\yolov8\runs\detect\drone_v9_300ep_32bath\weights\best.pt", task='detect') # Ensure you have the correct path to your YOLOv8 model |
| 181 | + |
| 182 | + # Tracker initialization ################################################# |
| 183 | + window_name = 'Tracker Demo' |
| 184 | + cv.namedWindow(window_name) |
| 185 | + |
| 186 | + tracker_list = [] |
| 187 | + detected_bboxes = [] |
| 188 | + |
| 189 | + while cap.isOpened(): |
| 190 | + ret, image = cap.read() |
| 191 | + if not ret: |
| 192 | + break |
| 193 | + debug_image = copy.deepcopy(image) |
| 194 | + |
| 195 | + # If no tracker is initialized, run detection until an object is found |
| 196 | + if not tracker_list: |
| 197 | + detected_bboxes = detect_objects(image, model) |
| 198 | + if detected_bboxes: |
| 199 | + tracker_list = initialize_tracker_list(window_name, image, tracker_algorithm_list, detected_bboxes) |
| 200 | + |
| 201 | + elapsed_time_list = [] |
| 202 | + tracker_scores = [] # Initialize a list to store tracker scores |
| 203 | + |
| 204 | + for index, tracker in enumerate(tracker_list): |
| 205 | + # Update tracking |
| 206 | + start_time = time.time() |
| 207 | + ok, bbox = tracker.update(image) |
| 208 | + try: |
| 209 | + tracker_score = tracker.getTrackingScore() |
| 210 | + except: |
| 211 | + tracker_score = '-' |
| 212 | + |
| 213 | + elapsed_time_list.append(time.time() - start_time) |
| 214 | + tracker_scores.append(tracker_score) # Append the score to the list |
| 215 | + |
| 216 | + if ok: |
| 217 | + # Draw bounding box after tracking |
| 218 | + new_bbox = [ |
| 219 | + int(bbox[0]), |
| 220 | + int(bbox[1]), |
| 221 | + int(bbox[2]), |
| 222 | + int(bbox[3]) |
| 223 | + ] |
| 224 | + cv.rectangle(debug_image, |
| 225 | + (new_bbox[0], new_bbox[1]), |
| 226 | + (new_bbox[0] + new_bbox[2], new_bbox[1] + new_bbox[3]), |
| 227 | + color_list[index % len(color_list)], |
| 228 | + thickness=2) |
| 229 | + else: |
| 230 | + # If tracking fails, reset trackers |
| 231 | + tracker_list = [] |
| 232 | + break |
| 233 | + |
| 234 | + # Display processing time and tracker scores for each algorithm |
| 235 | + for index, tracker_algorithm in enumerate(tracker_algorithm_list): |
| 236 | + if index < len(elapsed_time_list): |
| 237 | + elapsed_time_ms = elapsed_time_list[index] * 1000 |
| 238 | + if index < len(tracker_scores): |
| 239 | + score = tracker_scores[index] |
| 240 | + if score != '-': |
| 241 | + text = f"{tracker_algorithm} : {elapsed_time_ms:.1f}ms Score:{score:.2f}" |
| 242 | + else: |
| 243 | + text = f"{tracker_algorithm} : {elapsed_time_ms:.1f}ms" |
| 244 | + else: |
| 245 | + text = f"{tracker_algorithm} : {elapsed_time_ms:.1f}ms" |
| 246 | + else: |
| 247 | + text = f"{tracker_algorithm} : N/A" |
| 248 | + |
| 249 | + cv.putText( |
| 250 | + debug_image, |
| 251 | + text, |
| 252 | + (10, int(25 * (index + 1))), |
| 253 | + cv.FONT_HERSHEY_SIMPLEX, |
| 254 | + 0.7, |
| 255 | + color_list[index % len(color_list)], |
| 256 | + 2, |
| 257 | + cv.LINE_AA |
| 258 | + ) |
| 259 | + |
| 260 | + cv.imshow(window_name, debug_image) |
| 261 | + |
| 262 | + k = cv.waitKey(1) |
| 263 | + if k == 32: # SPACE |
| 264 | + # Reinitialize trackers based on new selection |
| 265 | + detected_bboxes = detect_objects(image, model) |
| 266 | + tracker_list = initialize_tracker_list(window_name, image, tracker_algorithm_list, detected_bboxes) |
| 267 | + if k == 27: # ESC |
| 268 | + break |
| 269 | + |
| 270 | + cap.release() |
| 271 | + cv.destroyAllWindows() |
| 272 | + |
| 273 | + |
| 274 | +if __name__ == '__main__': |
| 275 | + main() |
0 commit comments