|
| 1 | +#!/usr/bin/env python |
| 2 | +# -*- coding: utf-8 -*- |
| 3 | +import re |
| 4 | +import sys |
| 5 | +import copy |
| 6 | +import time |
| 7 | +import argparse |
| 8 | + |
| 9 | +import cv2 as cv |
| 10 | +from ultralytics import YOLO # YOLO import |
| 11 | +# print(cv.getBuildInformation()) |
| 12 | + |
| 13 | + |
| 14 | +def get_args(): |
| 15 | + parser = argparse.ArgumentParser() |
| 16 | + |
| 17 | + parser.add_argument("--device", default="sample_movie/bird.mp4") |
| 18 | + parser.add_argument("--width", help='cap width', type=int, default=640) |
| 19 | + parser.add_argument("--height", help='cap height', type=int, default=360) |
| 20 | + |
| 21 | + # Existing tracker options |
| 22 | + parser.add_argument('--use_mil', action='store_true') |
| 23 | + parser.add_argument('--use_goturn', action='store_true') |
| 24 | + parser.add_argument('--use_dasiamrpn', action='store_true') |
| 25 | + parser.add_argument('--use_csrt', action='store_true') |
| 26 | + parser.add_argument('--use_kcf', action='store_true') |
| 27 | + parser.add_argument('--use_boosting', action='store_true') |
| 28 | + parser.add_argument('--use_mosse', action='store_true') |
| 29 | + parser.add_argument('--use_medianflow', action='store_true') |
| 30 | + parser.add_argument('--use_tld', action='store_true') |
| 31 | + parser.add_argument('--use_nano', action='store_true') |
| 32 | + parser.add_argument('--use_vit', action='store_true') |
| 33 | + |
| 34 | + # Add argument to enable YOLO detection |
| 35 | + parser.add_argument('--use_yolo', action='store_true', help='Use YOLO for object detection') |
| 36 | + |
| 37 | + args = parser.parse_args() |
| 38 | + |
| 39 | + return args |
| 40 | + |
| 41 | +def isint(s): |
| 42 | + p = '[-+]?\d+' |
| 43 | + return True if re.fullmatch(p, s) else False |
| 44 | + |
| 45 | +def create_tracker_by_name(tracker_algorithm): |
| 46 | + tracker = None |
| 47 | + if tracker_algorithm == 'MIL': |
| 48 | + tracker = cv.TrackerMIL_create() |
| 49 | + elif tracker_algorithm == 'GOTURN': |
| 50 | + params = cv.TrackerGOTURN_Params() |
| 51 | + params.modelTxt = "model/GOTURN/goturn.prototxt" |
| 52 | + params.modelBin = "model/GOTURN/goturn.caffemodel" |
| 53 | + tracker = cv.TrackerGOTURN_create(params) |
| 54 | + elif tracker_algorithm == 'DaSiamRPN': |
| 55 | + params = cv.TrackerDaSiamRPN_Params() |
| 56 | + params.model = "model/DaSiamRPN/dasiamrpn_model.onnx" |
| 57 | + params.kernel_r1 = "model/DaSiamRPN/dasiamrpn_kernel_r1.onnx" |
| 58 | + params.kernel_cls1 = "model/DaSiamRPN/dasiamrpn_kernel_cls1.onnx" |
| 59 | + tracker = cv.TrackerDaSiamRPN_create(params) |
| 60 | + elif tracker_algorithm == 'Nano': |
| 61 | + params = cv.TrackerNano_Params() |
| 62 | + params.backbone = "model/nanotrackv2/nanotrack_backbone_sim.onnx" |
| 63 | + params.neckhead = "model/nanotrackv2/nanotrack_head_sim.onnx" |
| 64 | + tracker = cv.TrackerNano_create(params) |
| 65 | + elif tracker_algorithm == 'Vit': |
| 66 | + params = cv.TrackerVit_Params() |
| 67 | + params.net = "model/vit/object_tracking_vittrack_2023sep.onnx" |
| 68 | + tracker = cv.TrackerVit_create(params) |
| 69 | + elif tracker_algorithm == 'CSRT': |
| 70 | + tracker = cv.TrackerCSRT_create() |
| 71 | + elif tracker_algorithm == 'KCF': |
| 72 | + tracker = cv.TrackerKCF_create() |
| 73 | + elif tracker_algorithm == 'Boosting': |
| 74 | + tracker = cv.legacy.TrackerBoosting_create() |
| 75 | + elif tracker_algorithm == 'MOSSE': |
| 76 | + tracker = cv.legacy.TrackerMOSSE_create() |
| 77 | + elif tracker_algorithm == 'MedianFlow': |
| 78 | + tracker = cv.legacy.TrackerMedianFlow_create() |
| 79 | + elif tracker_algorithm == 'TLD': |
| 80 | + tracker = cv.legacy.TrackerTLD_create() |
| 81 | + return tracker |
| 82 | + |
| 83 | +def initialize_tracker_list(image, tracker_algorithm, bboxes): |
| 84 | + tracker_list = [] |
| 85 | + for i, bbox in enumerate(bboxes): |
| 86 | + tracker = create_tracker_by_name(tracker_algorithm) |
| 87 | + if tracker is not None: |
| 88 | + tracker.init(image, bbox) |
| 89 | + tracker_list.append((tracker, tracker_algorithm)) |
| 90 | + return tracker_list |
| 91 | + |
| 92 | +def main(): |
| 93 | + color_list = [ |
| 94 | + [255, 0, 0], # Blue |
| 95 | + [0, 255, 0], # Green |
| 96 | + [0, 0, 255], # Red |
| 97 | + [255, 255, 0], # Cyan |
| 98 | + [255, 0, 255], # Magenta |
| 99 | + [0, 255, 255], # Yellow |
| 100 | + [128, 0, 128], # Purple |
| 101 | + [128, 128, 0], # Olive |
| 102 | + [0, 128, 128], # Teal |
| 103 | + [128, 0, 0], # Maroon |
| 104 | + ] |
| 105 | + |
| 106 | + # Parse arguments |
| 107 | + args = get_args() |
| 108 | + |
| 109 | + cap_device = args.device |
| 110 | + cap_width = args.width |
| 111 | + cap_height = args.height |
| 112 | + |
| 113 | + # Prepare tracker algorithm |
| 114 | + tracker_algorithm = None |
| 115 | + if args.use_mil: |
| 116 | + tracker_algorithm = 'MIL' |
| 117 | + elif args.use_goturn: |
| 118 | + tracker_algorithm = 'GOTURN' |
| 119 | + elif args.use_dasiamrpn: |
| 120 | + tracker_algorithm = 'DaSiamRPN' |
| 121 | + elif args.use_csrt: |
| 122 | + tracker_algorithm = 'CSRT' |
| 123 | + elif args.use_kcf: |
| 124 | + tracker_algorithm = 'KCF' |
| 125 | + elif args.use_boosting: |
| 126 | + tracker_algorithm = 'Boosting' |
| 127 | + elif args.use_mosse: |
| 128 | + tracker_algorithm = 'MOSSE' |
| 129 | + elif args.use_medianflow: |
| 130 | + tracker_algorithm = 'MedianFlow' |
| 131 | + elif args.use_tld: |
| 132 | + tracker_algorithm = 'TLD' |
| 133 | + elif args.use_nano: |
| 134 | + tracker_algorithm = 'Nano' |
| 135 | + elif args.use_vit: |
| 136 | + tracker_algorithm = 'Vit' |
| 137 | + |
| 138 | + # If no tracker is specified, default to CSRT |
| 139 | + if tracker_algorithm is None: |
| 140 | + tracker_algorithm = 'CSRT' |
| 141 | + |
| 142 | + use_yolo = args.use_yolo # New argument for YOLO |
| 143 | + |
| 144 | + print("Tracker:", tracker_algorithm) |
| 145 | + print("Use YOLO:", use_yolo) |
| 146 | + |
| 147 | + # Open video capture |
| 148 | + if isint(cap_device): |
| 149 | + cap_device = int(cap_device) |
| 150 | + cap = cv.VideoCapture(cap_device) |
| 151 | + cap.set(cv.CAP_PROP_FRAME_WIDTH, cap_width) |
| 152 | + cap.set(cv.CAP_PROP_FRAME_HEIGHT, cap_height) |
| 153 | + |
| 154 | + # Initialize YOLO model if use_yolo is True |
| 155 | + if use_yolo: |
| 156 | + # yolo_model = YOLO('yolov8n.pt') |
| 157 | + yolo_model = YOLO("/home/artem-n/PycharmProjects/model/fly_last.pt") # You can choose a different model size |
| 158 | + |
| 159 | + # Initialize trackers |
| 160 | + window_name = 'Object Detection and Tracking' |
| 161 | + cv.namedWindow(window_name) |
| 162 | + |
| 163 | + ret, image = cap.read() |
| 164 | + if not ret: |
| 165 | + sys.exit("Can't read first frame") |
| 166 | + |
| 167 | + bboxes = [] |
| 168 | + if use_yolo: |
| 169 | + # Use YOLO to detect objects and initialize trackers |
| 170 | + results = yolo_model.predict(image, stream_buffer=False) |
| 171 | + for result in results: |
| 172 | + boxes = result.boxes |
| 173 | + for box in boxes: |
| 174 | + # Extract bounding box coordinates |
| 175 | + x1, y1, x2, y2 = box.xyxy[0] |
| 176 | + bbox = (int(x1), int(y1), int(x2 - x1), int(y2 - y1)) |
| 177 | + bboxes.append(bbox) |
| 178 | + else: |
| 179 | + # Manually select ROI |
| 180 | + bbox = cv.selectROI(window_name, image) |
| 181 | + bboxes.append(bbox) |
| 182 | + |
| 183 | + # Initialize tracker list |
| 184 | + tracker_list = initialize_tracker_list(image, tracker_algorithm, bboxes) |
| 185 | + |
| 186 | + while cap.isOpened(): |
| 187 | + ret, image = cap.read() |
| 188 | + if not ret: |
| 189 | + break |
| 190 | + debug_image = image.copy() |
| 191 | + |
| 192 | + # Update trackers |
| 193 | + for index, (tracker, tracker_algorithm) in enumerate(tracker_list): |
| 194 | + ok, bbox = tracker.update(image) |
| 195 | + if ok: |
| 196 | + # Draw bounding box |
| 197 | + p1 = (int(bbox[0]), int(bbox[1])) |
| 198 | + p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3])) |
| 199 | + color = color_list[index % len(color_list)] |
| 200 | + cv.rectangle(debug_image, p1, p2, color, 2, 1) |
| 201 | + # Display tracker type on bounding box |
| 202 | + cv.putText(debug_image, f"{tracker_algorithm}", p1, cv.FONT_HERSHEY_SIMPLEX, 0.75, color, 2) |
| 203 | + else: |
| 204 | + # Tracking failure |
| 205 | + cv.putText(debug_image, "Tracking failure detected", (10, 80), cv.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2) |
| 206 | + |
| 207 | + cv.imshow(window_name, debug_image) |
| 208 | + |
| 209 | + k = cv.waitKey(1) |
| 210 | + if k == 32: # SPACE |
| 211 | + # Re-initialize trackers |
| 212 | + ret, image = cap.read() |
| 213 | + if not ret: |
| 214 | + break |
| 215 | + bboxes = [] |
| 216 | + if use_yolo: |
| 217 | + # Re-detect objects using YOLO |
| 218 | + results = yolo_model(image) |
| 219 | + for result in results: |
| 220 | + boxes = result.boxes |
| 221 | + for box in boxes: |
| 222 | + x1, y1, x2, y2 = box.xyxy[0] |
| 223 | + bbox = (int(x1), int(y1), int(x2 - x1), int(y2 - y1)) |
| 224 | + bboxes.append(bbox) |
| 225 | + else: |
| 226 | + # Manually select ROI |
| 227 | + bbox = cv.selectROI(window_name, image) |
| 228 | + bboxes.append(bbox) |
| 229 | + tracker_list = initialize_tracker_list(image, tracker_algorithm, bboxes) |
| 230 | + elif k == 27: # ESC |
| 231 | + break |
| 232 | + |
| 233 | + cap.release() |
| 234 | + cv.destroyAllWindows() |
| 235 | + |
| 236 | +if __name__ == '__main__': |
| 237 | + main() |
0 commit comments