Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 1661938

Browse files
Merge pull request avinashkranjan#2273 from avinashkranjan/deepsource-transform-0863d605
format code with autopep8
2 parents 0cea8cd + 48aa925 commit 1661938

File tree

1 file changed

+19
-16
lines changed

1 file changed

+19
-16
lines changed

‎Job Recommendation Engine/Job Recommendation Engine.py‎

Lines changed: 19 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@
1616
# In[2]:
1717

1818

19-
data=pd.read_csv('naukri_com-jobs__20190701_20190830__30k_data.csv')
19+
data=pd.read_csv('naukri_com-jobs__20190701_20190830__30k_data.csv')
2020

2121

2222
# In[3]:
@@ -28,8 +28,10 @@
2828
# In[4]:
2929

3030

31-
user_profiles = data[['Uniq Id', 'Role Category', 'Location', 'Job Experience Required', 'Key Skills']]
32-
job_postings = data[['Uniq Id', 'Role Category', 'Location', 'Job Experience Required', 'Key Skills']]
31+
user_profiles = data[['Uniq Id', 'Role Category',
32+
'Location', 'Job Experience Required', 'Key Skills']]
33+
job_postings = data[['Uniq Id', 'Role Category',
34+
'Location', 'Job Experience Required', 'Key Skills']]
3335

3436

3537
# ### User Profile
@@ -48,7 +50,8 @@
4850

4951
user_profiles_matrix = pd.get_dummies(user_profiles.drop('Uniq Id', axis=1))
5052
user_profiles_matrix = normalize(user_profiles_matrix) # Normalize the matrix
51-
similarity_matrix = cosine_similarity(user_profiles_matrix, user_profiles_matrix)
53+
similarity_matrix = cosine_similarity(
54+
user_profiles_matrix, user_profiles_matrix)
5255

5356

5457
# ### Job recommendation
@@ -59,26 +62,33 @@
5962
# Define the number of nearest neighbors to consider
6063
k = 5
6164

65+
6266
def get_job_recommendations(user_id):
6367
user_index = user_profiles[user_profiles['Uniq Id'] == user_id].index[0]
64-
similar_users = similarity_matrix[user_index].argsort()[::-1][1:k+1] # Exclude the user itself
68+
similar_users = similarity_matrix[user_index].argsort(
69+
)[::-1][1:k+1] # Exclude the user itself
6570

6671
# Get job postings from similar users
6772
recommended_roles = []
6873
for user in similar_users:
6974
similar_user_id = user_profiles.iloc[user]['Uniq Id']
70-
similar_user_roles = data[data['Uniq Id'] == similar_user_id]['Role Category'].values
75+
similar_user_roles = data[data['Uniq Id'] ==
76+
similar_user_id]['Role Category'].values
7177
recommended_roles.extend(similar_user_roles)
7278

7379
# Filter out already interacted job roles
74-
user_interacted_roles = data[data['Uniq Id'] == user_id]['Role Category'].values
75-
recommended_roles = list(set(recommended_roles) - set(user_interacted_roles))
80+
user_interacted_roles = data[data['Uniq Id']
81+
== user_id]['Role Category'].values
82+
recommended_roles = list(set(recommended_roles) -
83+
set(user_interacted_roles))
7684

7785
# Rank recommended roles based on frequency
78-
recommended_roles = pd.Series(recommended_roles).value_counts().sort_values(ascending=False)
86+
recommended_roles = pd.Series(
87+
recommended_roles).value_counts().sort_values(ascending=False)
7988

8089
return recommended_roles.index.tolist()
8190

91+
8292
# Example usage
8393
user_id = '9be62c49a0b7ebe982a4af1edaa7bc5f'
8494
recommended_roles = get_job_recommendations(user_id)
@@ -90,11 +100,4 @@ def get_job_recommendations(user_id):
90100
# In[ ]:
91101

92102

93-
94-
95-
96103
# In[ ]:
97-
98-
99-
100-

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /