diff --git a/Gender-Age Detection/README.md b/Gender-Age Detection/README.md deleted file mode 100644 index 713d2156df..0000000000 --- a/Gender-Age Detection/README.md +++ /dev/null @@ -1,26 +0,0 @@ -# GENDER-AGE DETECTION - -## DESCRIPTION - -The objective of this project is to identify the gender and approximate age of a person given in an image automatically. - -## PROJECT REQUISITES - -To build this project we will use - -- Deep Learning to accurately identify the gender and age of a person from a single image of a face. -- We will use this [dataset](https://www.kaggle.com/ttungl/adience-benchmark-gender-and-age-classification) -- The predicted gender may be one of ‘Male’ and ‘Female’, and the predicted age may be one of the following 8 ranges- (0 – 2), (4 – 6), (8 – 12), (15 – 20), (25 – 32), (38 – 43), (48 – 53), (60 – 100). - -## PROJECT STRUCTURE - -These are the step to build Gender-Age Detection python project- - -- Detect faces -- Classify into Male/Female -- Classify into one of the 8 age ranges -- Put the results on the image and display it - -## AUTHOR NAME - -[ANUSHKA CHITRANSHI](https://github.com/codebuzzer01) diff --git a/Gender-Age Detection/age_deploy.prototxt b/Gender-Age Detection/age_deploy.prototxt deleted file mode 100644 index 9570d5c8a4..0000000000 --- a/Gender-Age Detection/age_deploy.prototxt +++ /dev/null @@ -1,175 +0,0 @@ -name: "CaffeNet" -input: "data" -input_dim: 1 -input_dim: 3 -input_dim: 227 -input_dim: 227 -layers { - name: "conv1" - type: CONVOLUTION - bottom: "data" - top: "conv1" - convolution_param { - num_output: 96 - kernel_size: 7 - stride: 4 - } -} -layers { - name: "relu1" - type: RELU - bottom: "conv1" - top: "conv1" -} -layers { - name: "pool1" - type: POOLING - bottom: "conv1" - top: "pool1" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm1" - type: LRN - bottom: "pool1" - top: "norm1" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv2" - type: CONVOLUTION - bottom: "norm1" - top: "conv2" - convolution_param { - num_output: 256 - pad: 2 - kernel_size: 5 - } -} -layers { - name: "relu2" - type: RELU - bottom: "conv2" - top: "conv2" -} -layers { - name: "pool2" - type: POOLING - bottom: "conv2" - top: "pool2" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm2" - type: LRN - bottom: "pool2" - top: "norm2" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv3" - type: CONVOLUTION - bottom: "norm2" - top: "conv3" - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - } -} -layers{ - name: "relu3" - type: RELU - bottom: "conv3" - top: "conv3" -} -layers { - name: "pool5" - type: POOLING - bottom: "conv3" - top: "pool5" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "fc6" - type: INNER_PRODUCT - bottom: "pool5" - top: "fc6" - inner_product_param { - num_output: 512 - } -} -layers { - name: "relu6" - type: RELU - bottom: "fc6" - top: "fc6" -} -layers { - name: "drop6" - type: DROPOUT - bottom: "fc6" - top: "fc6" - dropout_param { - dropout_ratio: 0.5 - } -} -layers { - name: "fc7" - type: INNER_PRODUCT - bottom: "fc6" - top: "fc7" - inner_product_param { - num_output: 512 - } -} -layers { - name: "relu7" - type: RELU - bottom: "fc7" - top: "fc7" -} -layers { - name: "drop7" - type: DROPOUT - bottom: "fc7" - top: "fc7" - dropout_param { - dropout_ratio: 0.5 - } -} -layers { - name: "fc8" - type: INNER_PRODUCT - bottom: "fc7" - top: "fc8" - inner_product_param { - num_output: 8 - } -} -layers { - name: "prob" - type: SOFTMAX - bottom: "fc8" - top: "prob" -} \ No newline at end of file diff --git a/Gender-Age Detection/age_net.caffemodel b/Gender-Age Detection/age_net.caffemodel deleted file mode 100644 index 8391af479b..0000000000 Binary files a/Gender-Age Detection/age_net.caffemodel and /dev/null differ diff --git a/Gender-Age Detection/gad.py b/Gender-Age Detection/gad.py deleted file mode 100644 index 413bd700fd..0000000000 --- a/Gender-Age Detection/gad.py +++ /dev/null @@ -1,75 +0,0 @@ -import cv2 -import math -import argparse - -def highlightFace(net, frame, conf_threshold=0.7): - frameOpencvDnn=frame.copy() - frameHeight=frameOpencvDnn.shape[0] - frameWidth=frameOpencvDnn.shape[1] - blob=cv2.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False) - - net.setInput(blob) - detections=net.forward() - faceBoxes=[] - for i in range(detections.shape[2]): - confidence=detections[0,0,i,2] - if confidence>conf_threshold: - x1=int(detections[0,0,i,3]*frameWidth) - y1=int(detections[0,0,i,4]*frameHeight) - x2=int(detections[0,0,i,5]*frameWidth) - y2=int(detections[0,0,i,6]*frameHeight) - faceBoxes.append([x1,y1,x2,y2]) - cv2.rectangle(frameOpencvDnn, (x1,y1), (x2,y2), (0,255,0), int(round(frameHeight/150)), 8) - return frameOpencvDnn,faceBoxes - - -parser=argparse.ArgumentParser() -parser.add_argument('--image') - -args=parser.parse_args() - -faceProto="opencv_face_detector.pbtxt" -faceModel="opencv_face_detector_uint8.pb" -ageProto="age_deploy.prototxt" -ageModel="age_net.caffemodel" -genderProto="gender_deploy.prototxt" -genderModel="gender_net.caffemodel" - -MODEL_MEAN_VALUES=(78.4263377603, 87.7689143744, 114.895847746) -ageList=['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)'] -genderList=['Male','Female'] - -faceNet=cv2.dnn.readNet(faceModel,faceProto) -ageNet=cv2.dnn.readNet(ageModel,ageProto) -genderNet=cv2.dnn.readNet(genderModel,genderProto) - -video=cv2.VideoCapture(args.image if args.image else 0) -padding=20 -while cv2.waitKey(1)<0: - hasFrame,frame=video.read() - if not hasFrame: - cv2.waitKey() - break - - resultImg,faceBoxes=highlightFace(faceNet,frame) - if not faceBoxes: - print("No face detected") - - for faceBox in faceBoxes: - face=frame[max(0,faceBox[1]-padding): - min(faceBox[3]+padding,frame.shape[0]-1),max(0,faceBox[0]-padding) - :min(faceBox[2]+padding, frame.shape[1]-1)] - - blob=cv2.dnn.blobFromImage(face, 1.0, (227,227), MODEL_MEAN_VALUES, swapRB=False) - genderNet.setInput(blob) - genderPreds=genderNet.forward() - gender=genderList[genderPreds[0].argmax()] - print(f'Gender: {gender}') - - ageNet.setInput(blob) - agePreds=ageNet.forward() - age=ageList[agePreds[0].argmax()] - print(f'Age: {age[1:-1]} years') - - cv2.putText(resultImg, f'{gender}, {age}', (faceBox[0], faceBox[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,255,255), 2, cv2.LINE_AA) - cv2.imshow("Detecting age and gender", resultImg) diff --git a/Gender-Age Detection/gender_deploy.prototxt b/Gender-Age Detection/gender_deploy.prototxt deleted file mode 100644 index 65fd69caf8..0000000000 --- a/Gender-Age Detection/gender_deploy.prototxt +++ /dev/null @@ -1,175 +0,0 @@ -name: "CaffeNet" -input: "data" -input_dim: 10 -input_dim: 3 -input_dim: 227 -input_dim: 227 -layers { - name: "conv1" - type: CONVOLUTION - bottom: "data" - top: "conv1" - convolution_param { - num_output: 96 - kernel_size: 7 - stride: 4 - } -} -layers { - name: "relu1" - type: RELU - bottom: "conv1" - top: "conv1" -} -layers { - name: "pool1" - type: POOLING - bottom: "conv1" - top: "pool1" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm1" - type: LRN - bottom: "pool1" - top: "norm1" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv2" - type: CONVOLUTION - bottom: "norm1" - top: "conv2" - convolution_param { - num_output: 256 - pad: 2 - kernel_size: 5 - } -} -layers { - name: "relu2" - type: RELU - bottom: "conv2" - top: "conv2" -} -layers { - name: "pool2" - type: POOLING - bottom: "conv2" - top: "pool2" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm2" - type: LRN - bottom: "pool2" - top: "norm2" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv3" - type: CONVOLUTION - bottom: "norm2" - top: "conv3" - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - } -} -layers{ - name: "relu3" - type: RELU - bottom: "conv3" - top: "conv3" -} -layers { - name: "pool5" - type: POOLING - bottom: "conv3" - top: "pool5" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "fc6" - type: INNER_PRODUCT - bottom: "pool5" - top: "fc6" - inner_product_param { - num_output: 512 - } -} -layers { - name: "relu6" - type: RELU - bottom: "fc6" - top: "fc6" -} -layers { - name: "drop6" - type: DROPOUT - bottom: "fc6" - top: "fc6" - dropout_param { - dropout_ratio: 0.5 - } -} -layers { - name: "fc7" - type: INNER_PRODUCT - bottom: "fc6" - top: "fc7" - inner_product_param { - num_output: 512 - } -} -layers { - name: "relu7" - type: RELU - bottom: "fc7" - top: "fc7" -} -layers { - name: "drop7" - type: DROPOUT - bottom: "fc7" - top: "fc7" - dropout_param { - dropout_ratio: 0.5 - } -} -layers { - name: "fc8" - type: INNER_PRODUCT - bottom: "fc7" - top: "fc8" - inner_product_param { - num_output: 2 - } -} -layers { - name: "prob" - type: SOFTMAX - bottom: "fc8" - top: "prob" -} \ No newline at end of file diff --git a/Gender-Age Detection/gender_net.caffemodel b/Gender-Age Detection/gender_net.caffemodel deleted file mode 100644 index 87862497f4..0000000000 Binary files a/Gender-Age Detection/gender_net.caffemodel and /dev/null differ diff --git a/Gender-Age Detection/girl1.jpg b/Gender-Age Detection/girl1.jpg deleted file mode 100644 index b2285277f6..0000000000 Binary files a/Gender-Age Detection/girl1.jpg and /dev/null differ diff --git a/Gender-Age Detection/girl2.jpg b/Gender-Age Detection/girl2.jpg deleted file mode 100644 index 0961996f26..0000000000 Binary files a/Gender-Age Detection/girl2.jpg and /dev/null differ diff --git a/Gender-Age Detection/kid1.jpg b/Gender-Age Detection/kid1.jpg deleted file mode 100644 index 0c9a06ea27..0000000000 Binary files a/Gender-Age Detection/kid1.jpg and /dev/null differ diff --git a/Gender-Age Detection/man1.jpg b/Gender-Age Detection/man1.jpg deleted file mode 100644 index d67d6339e4..0000000000 Binary files a/Gender-Age Detection/man1.jpg and /dev/null differ diff --git a/Gender-Age Detection/minion.jpg b/Gender-Age Detection/minion.jpg deleted file mode 100644 index e1dfb3ac2c..0000000000 Binary files a/Gender-Age Detection/minion.jpg and /dev/null differ diff --git a/Gender-Age Detection/opencv_face_detector.pbtxt b/Gender-Age Detection/opencv_face_detector.pbtxt deleted file mode 100644 index d2dde7d4cd..0000000000 --- a/Gender-Age Detection/opencv_face_detector.pbtxt +++ /dev/null @@ -1,2362 +0,0 @@ -node { - name: "data" - op: "Placeholder" - attr { - key: "dtype" - value { - type: DT_FLOAT - } - } -} -node { - name: "data_bn/FusedBatchNorm" - op: "FusedBatchNorm" - input: "data:0" - input: "data_bn/gamma" - input: "data_bn/beta" - input: "data_bn/mean" - input: "data_bn/std" - attr { - key: "epsilon" - value { - f: 1.00099996416e-05 - } - } -} -node { - name: "data_scale/Mul" - op: "Mul" - input: "data_bn/FusedBatchNorm" - input: "data_scale/mul" -} -node { - name: "data_scale/BiasAdd" - op: "BiasAdd" - input: "data_scale/Mul" - input: "data_scale/add" -} -node { - name: "SpaceToBatchND/block_shape" - op: "Const" - attr { - key: "value" - value { - tensor { - dtype: DT_INT32 - tensor_shape { - dim { - size: 2 - } - } - int_val: 1 - int_val: 1 - } - } - } -} -node { - name: "SpaceToBatchND/paddings" - op: "Const" - attr { - key: "value" - value { - tensor { - dtype: DT_INT32 - tensor_shape { - dim { - size: 2 - } - dim { - size: 2 - } - } - int_val: 3 - int_val: 3 - int_val: 3 - int_val: 3 - } - } - } -} -node { - name: "Pad" - op: "SpaceToBatchND" - input: "data_scale/BiasAdd" - input: "SpaceToBatchND/block_shape" - input: "SpaceToBatchND/paddings" -} -node { - name: "conv1_h/Conv2D" - op: "Conv2D" - input: "Pad" - input: "conv1_h/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "VALID" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 2 - i: 2 - i: 1 - } - } - } -} -node { - name: "conv1_h/BiasAdd" - op: "BiasAdd" - input: "conv1_h/Conv2D" - input: "conv1_h/bias" -} -node { - name: "BatchToSpaceND" - op: "BatchToSpaceND" - input: "conv1_h/BiasAdd" -} -node { - name: "conv1_bn_h/FusedBatchNorm" - op: "FusedBatchNorm" - input: "BatchToSpaceND" - input: "conv1_bn_h/gamma" - input: "conv1_bn_h/beta" - input: "conv1_bn_h/mean" - input: "conv1_bn_h/std" - attr { - key: "epsilon" - value { - f: 1.00099996416e-05 - } - } -} -node { - name: "conv1_scale_h/Mul" - op: "Mul" - input: "conv1_bn_h/FusedBatchNorm" - input: "conv1_scale_h/mul" -} -node { - name: "conv1_scale_h/BiasAdd" - op: "BiasAdd" - input: "conv1_scale_h/Mul" - input: "conv1_scale_h/add" -} -node { - name: "Relu" - op: "Relu" - input: "conv1_scale_h/BiasAdd" -} -node { - name: "conv1_pool/MaxPool" - op: "MaxPool" - input: "Relu" - attr { - key: "ksize" - value { - list { - i: 1 - i: 3 - i: 3 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 2 - i: 2 - i: 1 - } - } - } -} -node { - name: "layer_64_1_conv1_h/Conv2D" - op: "Conv2D" - input: "conv1_pool/MaxPool" - input: "layer_64_1_conv1_h/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "layer_64_1_bn2_h/FusedBatchNorm" - op: "BiasAdd" - input: "layer_64_1_conv1_h/Conv2D" - input: "layer_64_1_conv1_h/Conv2D_bn_offset" -} -node { - name: "layer_64_1_scale2_h/Mul" - op: "Mul" - input: "layer_64_1_bn2_h/FusedBatchNorm" - input: "layer_64_1_scale2_h/mul" -} -node { - name: "layer_64_1_scale2_h/BiasAdd" - op: "BiasAdd" - input: "layer_64_1_scale2_h/Mul" - input: "layer_64_1_scale2_h/add" -} -node { - name: "Relu_1" - op: "Relu" - input: "layer_64_1_scale2_h/BiasAdd" -} -node { - name: "layer_64_1_conv2_h/Conv2D" - op: "Conv2D" - input: "Relu_1" - input: "layer_64_1_conv2_h/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "add" - op: "Add" - input: "layer_64_1_conv2_h/Conv2D" - input: "conv1_pool/MaxPool" -} -node { - name: "layer_128_1_bn1_h/FusedBatchNorm" - op: "FusedBatchNorm" - input: "add" - input: "layer_128_1_bn1_h/gamma" - input: "layer_128_1_bn1_h/beta" - input: "layer_128_1_bn1_h/mean" - input: "layer_128_1_bn1_h/std" - attr { - key: "epsilon" - value { - f: 1.00099996416e-05 - } - } -} -node { - name: "layer_128_1_scale1_h/Mul" - op: "Mul" - input: "layer_128_1_bn1_h/FusedBatchNorm" - input: "layer_128_1_scale1_h/mul" -} -node { - name: "layer_128_1_scale1_h/BiasAdd" - op: "BiasAdd" - input: "layer_128_1_scale1_h/Mul" - input: "layer_128_1_scale1_h/add" -} -node { - name: "Relu_2" - op: "Relu" - input: "layer_128_1_scale1_h/BiasAdd" -} -node { - name: "layer_128_1_conv_expand_h/Conv2D" - op: "Conv2D" - input: "Relu_2" - input: "layer_128_1_conv_expand_h/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 2 - i: 2 - i: 1 - } - } - } -} -node { - name: "layer_128_1_conv1_h/Conv2D" - op: "Conv2D" - input: "Relu_2" - input: "layer_128_1_conv1_h/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 2 - i: 2 - i: 1 - } - } - } -} -node { - name: "layer_128_1_bn2/FusedBatchNorm" - op: "BiasAdd" - input: "layer_128_1_conv1_h/Conv2D" - input: "layer_128_1_conv1_h/Conv2D_bn_offset" -} -node { - name: "layer_128_1_scale2/Mul" - op: "Mul" - input: "layer_128_1_bn2/FusedBatchNorm" - input: "layer_128_1_scale2/mul" -} -node { - name: "layer_128_1_scale2/BiasAdd" - op: "BiasAdd" - input: "layer_128_1_scale2/Mul" - input: "layer_128_1_scale2/add" -} -node { - name: "Relu_3" - op: "Relu" - input: "layer_128_1_scale2/BiasAdd" -} -node { - name: "layer_128_1_conv2/Conv2D" - op: "Conv2D" - input: "Relu_3" - input: "layer_128_1_conv2/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "add_1" - op: "Add" - input: "layer_128_1_conv2/Conv2D" - input: "layer_128_1_conv_expand_h/Conv2D" -} -node { - name: "layer_256_1_bn1/FusedBatchNorm" - op: "FusedBatchNorm" - input: "add_1" - input: "layer_256_1_bn1/gamma" - input: "layer_256_1_bn1/beta" - input: "layer_256_1_bn1/mean" - input: "layer_256_1_bn1/std" - attr { - key: "epsilon" - value { - f: 1.00099996416e-05 - } - } -} -node { - name: "layer_256_1_scale1/Mul" - op: "Mul" - input: "layer_256_1_bn1/FusedBatchNorm" - input: "layer_256_1_scale1/mul" -} -node { - name: "layer_256_1_scale1/BiasAdd" - op: "BiasAdd" - input: "layer_256_1_scale1/Mul" - input: "layer_256_1_scale1/add" -} -node { - name: "Relu_4" - op: "Relu" - input: "layer_256_1_scale1/BiasAdd" -} -node { - name: "SpaceToBatchND_1/paddings" - op: "Const" - attr { - key: "value" - value { - tensor { - dtype: DT_INT32 - tensor_shape { - dim { - size: 2 - } - dim { - size: 2 - } - } - int_val: 1 - int_val: 1 - int_val: 1 - int_val: 1 - } - } - } -} -node { - name: "layer_256_1_conv_expand/Conv2D" - op: "Conv2D" - input: "Relu_4" - input: "layer_256_1_conv_expand/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 2 - i: 2 - i: 1 - } - } - } -} -node { - name: "conv4_3_norm/l2_normalize" - op: "L2Normalize" - input: "Relu_4:0" - input: "conv4_3_norm/l2_normalize/Sum/reduction_indices" -} -node { - name: "conv4_3_norm/mul_1" - op: "Mul" - input: "conv4_3_norm/l2_normalize" - input: "conv4_3_norm/mul" -} -node { - name: "conv4_3_norm_mbox_loc/Conv2D" - op: "Conv2D" - input: "conv4_3_norm/mul_1" - input: "conv4_3_norm_mbox_loc/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "conv4_3_norm_mbox_loc/BiasAdd" - op: "BiasAdd" - input: "conv4_3_norm_mbox_loc/Conv2D" - input: "conv4_3_norm_mbox_loc/bias" -} -node { - name: "flatten/Reshape" - op: "Flatten" - input: "conv4_3_norm_mbox_loc/BiasAdd" -} -node { - name: "conv4_3_norm_mbox_conf/Conv2D" - op: "Conv2D" - input: "conv4_3_norm/mul_1" - input: "conv4_3_norm_mbox_conf/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "conv4_3_norm_mbox_conf/BiasAdd" - op: "BiasAdd" - input: "conv4_3_norm_mbox_conf/Conv2D" - input: "conv4_3_norm_mbox_conf/bias" -} -node { - name: "flatten_6/Reshape" - op: "Flatten" - input: "conv4_3_norm_mbox_conf/BiasAdd" -} -node { - name: "Pad_1" - op: "SpaceToBatchND" - input: "Relu_4" - input: "SpaceToBatchND/block_shape" - input: "SpaceToBatchND_1/paddings" -} -node { - name: "layer_256_1_conv1/Conv2D" - op: "Conv2D" - input: "Pad_1" - input: "layer_256_1_conv1/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "VALID" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 2 - i: 2 - i: 1 - } - } - } -} -node { - name: "layer_256_1_bn2/FusedBatchNorm" - op: "BiasAdd" - input: "layer_256_1_conv1/Conv2D" - input: "layer_256_1_conv1/Conv2D_bn_offset" -} -node { - name: "BatchToSpaceND_1" - op: "BatchToSpaceND" - input: "layer_256_1_bn2/FusedBatchNorm" -} -node { - name: "layer_256_1_scale2/Mul" - op: "Mul" - input: "BatchToSpaceND_1" - input: "layer_256_1_scale2/mul" -} -node { - name: "layer_256_1_scale2/BiasAdd" - op: "BiasAdd" - input: "layer_256_1_scale2/Mul" - input: "layer_256_1_scale2/add" -} -node { - name: "Relu_5" - op: "Relu" - input: "layer_256_1_scale2/BiasAdd" -} -node { - name: "layer_256_1_conv2/Conv2D" - op: "Conv2D" - input: "Relu_5" - input: "layer_256_1_conv2/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "add_2" - op: "Add" - input: "layer_256_1_conv2/Conv2D" - input: "layer_256_1_conv_expand/Conv2D" -} -node { - name: "layer_512_1_bn1/FusedBatchNorm" - op: "FusedBatchNorm" - input: "add_2" - input: "layer_512_1_bn1/gamma" - input: "layer_512_1_bn1/beta" - input: "layer_512_1_bn1/mean" - input: "layer_512_1_bn1/std" - attr { - key: "epsilon" - value { - f: 1.00099996416e-05 - } - } -} -node { - name: "layer_512_1_scale1/Mul" - op: "Mul" - input: "layer_512_1_bn1/FusedBatchNorm" - input: "layer_512_1_scale1/mul" -} -node { - name: "layer_512_1_scale1/BiasAdd" - op: "BiasAdd" - input: "layer_512_1_scale1/Mul" - input: "layer_512_1_scale1/add" -} -node { - name: "Relu_6" - op: "Relu" - input: "layer_512_1_scale1/BiasAdd" -} -node { - name: "layer_512_1_conv_expand_h/Conv2D" - op: "Conv2D" - input: "Relu_6" - input: "layer_512_1_conv_expand_h/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "layer_512_1_conv1_h/Conv2D" - op: "Conv2D" - input: "Relu_6" - input: "layer_512_1_conv1_h/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "layer_512_1_bn2_h/FusedBatchNorm" - op: "BiasAdd" - input: "layer_512_1_conv1_h/Conv2D" - input: "layer_512_1_conv1_h/Conv2D_bn_offset" -} -node { - name: "layer_512_1_scale2_h/Mul" - op: "Mul" - input: "layer_512_1_bn2_h/FusedBatchNorm" - input: "layer_512_1_scale2_h/mul" -} -node { - name: "layer_512_1_scale2_h/BiasAdd" - op: "BiasAdd" - input: "layer_512_1_scale2_h/Mul" - input: "layer_512_1_scale2_h/add" -} -node { - name: "Relu_7" - op: "Relu" - input: "layer_512_1_scale2_h/BiasAdd" -} -node { - name: "layer_512_1_conv2_h/convolution/SpaceToBatchND" - op: "SpaceToBatchND" - input: "Relu_7" - input: "layer_512_1_conv2_h/convolution/SpaceToBatchND/block_shape" - input: "layer_512_1_conv2_h/convolution/SpaceToBatchND/paddings" -} -node { - name: "layer_512_1_conv2_h/convolution" - op: "Conv2D" - input: "layer_512_1_conv2_h/convolution/SpaceToBatchND" - input: "layer_512_1_conv2_h/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "VALID" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "layer_512_1_conv2_h/convolution/BatchToSpaceND" - op: "BatchToSpaceND" - input: "layer_512_1_conv2_h/convolution" - input: "layer_512_1_conv2_h/convolution/BatchToSpaceND/block_shape" - input: "layer_512_1_conv2_h/convolution/BatchToSpaceND/crops" -} -node { - name: "add_3" - op: "Add" - input: "layer_512_1_conv2_h/convolution/BatchToSpaceND" - input: "layer_512_1_conv_expand_h/Conv2D" -} -node { - name: "last_bn_h/FusedBatchNorm" - op: "FusedBatchNorm" - input: "add_3" - input: "last_bn_h/gamma" - input: "last_bn_h/beta" - input: "last_bn_h/mean" - input: "last_bn_h/std" - attr { - key: "epsilon" - value { - f: 1.00099996416e-05 - } - } -} -node { - name: "last_scale_h/Mul" - op: "Mul" - input: "last_bn_h/FusedBatchNorm" - input: "last_scale_h/mul" -} -node { - name: "last_scale_h/BiasAdd" - op: "BiasAdd" - input: "last_scale_h/Mul" - input: "last_scale_h/add" -} -node { - name: "last_relu" - op: "Relu" - input: "last_scale_h/BiasAdd" -} -node { - name: "conv6_1_h/Conv2D" - op: "Conv2D" - input: "last_relu" - input: "conv6_1_h/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "conv6_1_h/BiasAdd" - op: "BiasAdd" - input: "conv6_1_h/Conv2D" - input: "conv6_1_h/bias" -} -node { - name: "conv6_1_h/Relu" - op: "Relu" - input: "conv6_1_h/BiasAdd" -} -node { - name: "conv6_2_h/Conv2D" - op: "Conv2D" - input: "conv6_1_h/Relu" - input: "conv6_2_h/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 2 - i: 2 - i: 1 - } - } - } -} -node { - name: "conv6_2_h/BiasAdd" - op: "BiasAdd" - input: "conv6_2_h/Conv2D" - input: "conv6_2_h/bias" -} -node { - name: "conv6_2_h/Relu" - op: "Relu" - input: "conv6_2_h/BiasAdd" -} -node { - name: "conv7_1_h/Conv2D" - op: "Conv2D" - input: "conv6_2_h/Relu" - input: "conv7_1_h/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "conv7_1_h/BiasAdd" - op: "BiasAdd" - input: "conv7_1_h/Conv2D" - input: "conv7_1_h/bias" -} -node { - name: "conv7_1_h/Relu" - op: "Relu" - input: "conv7_1_h/BiasAdd" -} -node { - name: "Pad_2" - op: "SpaceToBatchND" - input: "conv7_1_h/Relu" - input: "SpaceToBatchND/block_shape" - input: "SpaceToBatchND_1/paddings" -} -node { - name: "conv7_2_h/Conv2D" - op: "Conv2D" - input: "Pad_2" - input: "conv7_2_h/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "VALID" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 2 - i: 2 - i: 1 - } - } - } -} -node { - name: "conv7_2_h/BiasAdd" - op: "BiasAdd" - input: "conv7_2_h/Conv2D" - input: "conv7_2_h/bias" -} -node { - name: "BatchToSpaceND_2" - op: "BatchToSpaceND" - input: "conv7_2_h/BiasAdd" -} -node { - name: "conv7_2_h/Relu" - op: "Relu" - input: "BatchToSpaceND_2" -} -node { - name: "conv8_1_h/Conv2D" - op: "Conv2D" - input: "conv7_2_h/Relu" - input: "conv8_1_h/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "conv8_1_h/BiasAdd" - op: "BiasAdd" - input: "conv8_1_h/Conv2D" - input: "conv8_1_h/bias" -} -node { - name: "conv8_1_h/Relu" - op: "Relu" - input: "conv8_1_h/BiasAdd" -} -node { - name: "conv8_2_h/Conv2D" - op: "Conv2D" - input: "conv8_1_h/Relu" - input: "conv8_2_h/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "conv8_2_h/BiasAdd" - op: "BiasAdd" - input: "conv8_2_h/Conv2D" - input: "conv8_2_h/bias" -} -node { - name: "conv8_2_h/Relu" - op: "Relu" - input: "conv8_2_h/BiasAdd" -} -node { - name: "conv9_1_h/Conv2D" - op: "Conv2D" - input: "conv8_2_h/Relu" - input: "conv9_1_h/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "conv9_1_h/BiasAdd" - op: "BiasAdd" - input: "conv9_1_h/Conv2D" - input: "conv9_1_h/bias" -} -node { - name: "conv9_1_h/Relu" - op: "Relu" - input: "conv9_1_h/BiasAdd" -} -node { - name: "conv9_2_h/Conv2D" - op: "Conv2D" - input: "conv9_1_h/Relu" - input: "conv9_2_h/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "conv9_2_h/BiasAdd" - op: "BiasAdd" - input: "conv9_2_h/Conv2D" - input: "conv9_2_h/bias" -} -node { - name: "conv9_2_h/Relu" - op: "Relu" - input: "conv9_2_h/BiasAdd" -} -node { - name: "conv9_2_mbox_loc/Conv2D" - op: "Conv2D" - input: "conv9_2_h/Relu" - input: "conv9_2_mbox_loc/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "conv9_2_mbox_loc/BiasAdd" - op: "BiasAdd" - input: "conv9_2_mbox_loc/Conv2D" - input: "conv9_2_mbox_loc/bias" -} -node { - name: "flatten_5/Reshape" - op: "Flatten" - input: "conv9_2_mbox_loc/BiasAdd" -} -node { - name: "conv9_2_mbox_conf/Conv2D" - op: "Conv2D" - input: "conv9_2_h/Relu" - input: "conv9_2_mbox_conf/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "conv9_2_mbox_conf/BiasAdd" - op: "BiasAdd" - input: "conv9_2_mbox_conf/Conv2D" - input: "conv9_2_mbox_conf/bias" -} -node { - name: "flatten_11/Reshape" - op: "Flatten" - input: "conv9_2_mbox_conf/BiasAdd" -} -node { - name: "conv8_2_mbox_loc/Conv2D" - op: "Conv2D" - input: "conv8_2_h/Relu" - input: "conv8_2_mbox_loc/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "conv8_2_mbox_loc/BiasAdd" - op: "BiasAdd" - input: "conv8_2_mbox_loc/Conv2D" - input: "conv8_2_mbox_loc/bias" -} -node { - name: "flatten_4/Reshape" - op: "Flatten" - input: "conv8_2_mbox_loc/BiasAdd" -} -node { - name: "conv8_2_mbox_conf/Conv2D" - op: "Conv2D" - input: "conv8_2_h/Relu" - input: "conv8_2_mbox_conf/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "conv8_2_mbox_conf/BiasAdd" - op: "BiasAdd" - input: "conv8_2_mbox_conf/Conv2D" - input: "conv8_2_mbox_conf/bias" -} -node { - name: "flatten_10/Reshape" - op: "Flatten" - input: "conv8_2_mbox_conf/BiasAdd" -} -node { - name: "conv7_2_mbox_loc/Conv2D" - op: "Conv2D" - input: "conv7_2_h/Relu" - input: "conv7_2_mbox_loc/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "conv7_2_mbox_loc/BiasAdd" - op: "BiasAdd" - input: "conv7_2_mbox_loc/Conv2D" - input: "conv7_2_mbox_loc/bias" -} -node { - name: "flatten_3/Reshape" - op: "Flatten" - input: "conv7_2_mbox_loc/BiasAdd" -} -node { - name: "conv7_2_mbox_conf/Conv2D" - op: "Conv2D" - input: "conv7_2_h/Relu" - input: "conv7_2_mbox_conf/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "conv7_2_mbox_conf/BiasAdd" - op: "BiasAdd" - input: "conv7_2_mbox_conf/Conv2D" - input: "conv7_2_mbox_conf/bias" -} -node { - name: "flatten_9/Reshape" - op: "Flatten" - input: "conv7_2_mbox_conf/BiasAdd" -} -node { - name: "conv6_2_mbox_loc/Conv2D" - op: "Conv2D" - input: "conv6_2_h/Relu" - input: "conv6_2_mbox_loc/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "conv6_2_mbox_loc/BiasAdd" - op: "BiasAdd" - input: "conv6_2_mbox_loc/Conv2D" - input: "conv6_2_mbox_loc/bias" -} -node { - name: "flatten_2/Reshape" - op: "Flatten" - input: "conv6_2_mbox_loc/BiasAdd" -} -node { - name: "conv6_2_mbox_conf/Conv2D" - op: "Conv2D" - input: "conv6_2_h/Relu" - input: "conv6_2_mbox_conf/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "conv6_2_mbox_conf/BiasAdd" - op: "BiasAdd" - input: "conv6_2_mbox_conf/Conv2D" - input: "conv6_2_mbox_conf/bias" -} -node { - name: "flatten_8/Reshape" - op: "Flatten" - input: "conv6_2_mbox_conf/BiasAdd" -} -node { - name: "fc7_mbox_loc/Conv2D" - op: "Conv2D" - input: "last_relu" - input: "fc7_mbox_loc/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "fc7_mbox_loc/BiasAdd" - op: "BiasAdd" - input: "fc7_mbox_loc/Conv2D" - input: "fc7_mbox_loc/bias" -} -node { - name: "flatten_1/Reshape" - op: "Flatten" - input: "fc7_mbox_loc/BiasAdd" -} -node { - name: "mbox_loc" - op: "ConcatV2" - input: "flatten/Reshape" - input: "flatten_1/Reshape" - input: "flatten_2/Reshape" - input: "flatten_3/Reshape" - input: "flatten_4/Reshape" - input: "flatten_5/Reshape" - input: "mbox_loc/axis" -} -node { - name: "fc7_mbox_conf/Conv2D" - op: "Conv2D" - input: "last_relu" - input: "fc7_mbox_conf/weights" - attr { - key: "dilations" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } - attr { - key: "padding" - value { - s: "SAME" - } - } - attr { - key: "strides" - value { - list { - i: 1 - i: 1 - i: 1 - i: 1 - } - } - } -} -node { - name: "fc7_mbox_conf/BiasAdd" - op: "BiasAdd" - input: "fc7_mbox_conf/Conv2D" - input: "fc7_mbox_conf/bias" -} -node { - name: "flatten_7/Reshape" - op: "Flatten" - input: "fc7_mbox_conf/BiasAdd" -} -node { - name: "mbox_conf" - op: "ConcatV2" - input: "flatten_6/Reshape" - input: "flatten_7/Reshape" - input: "flatten_8/Reshape" - input: "flatten_9/Reshape" - input: "flatten_10/Reshape" - input: "flatten_11/Reshape" - input: "mbox_conf/axis" -} -node { - name: "mbox_conf_reshape" - op: "Reshape" - input: "mbox_conf" - input: "reshape_before_softmax" -} -node { - name: "mbox_conf_softmax" - op: "Softmax" - input: "mbox_conf_reshape" - attr { - key: "axis" - value { - i: 2 - } - } -} -node { - name: "mbox_conf_flatten" - op: "Flatten" - input: "mbox_conf_softmax" -} -node { - name: "PriorBox_0" - op: "PriorBox" - input: "conv4_3_norm/mul_1" - input: "data" - attr { - key: "aspect_ratio" - value { - tensor { - dtype: DT_FLOAT - tensor_shape { - dim { - size: 1 - } - } - float_val: 2.0 - } - } - } - attr { - key: "clip" - value { - b: false - } - } - attr { - key: "flip" - value { - b: true - } - } - attr { - key: "max_size" - value { - i: 60 - } - } - attr { - key: "min_size" - value { - i: 30 - } - } - attr { - key: "offset" - value { - f: 0.5 - } - } - attr { - key: "step" - value { - f: 8.0 - } - } - attr { - key: "variance" - value { - tensor { - dtype: DT_FLOAT - tensor_shape { - dim { - size: 4 - } - } - float_val: 0.10000000149 - float_val: 0.10000000149 - float_val: 0.20000000298 - float_val: 0.20000000298 - } - } - } -} -node { - name: "PriorBox_1" - op: "PriorBox" - input: "last_relu" - input: "data" - attr { - key: "aspect_ratio" - value { - tensor { - dtype: DT_FLOAT - tensor_shape { - dim { - size: 2 - } - } - float_val: 2.0 - float_val: 3.0 - } - } - } - attr { - key: "clip" - value { - b: false - } - } - attr { - key: "flip" - value { - b: true - } - } - attr { - key: "max_size" - value { - i: 111 - } - } - attr { - key: "min_size" - value { - i: 60 - } - } - attr { - key: "offset" - value { - f: 0.5 - } - } - attr { - key: "step" - value { - f: 16.0 - } - } - attr { - key: "variance" - value { - tensor { - dtype: DT_FLOAT - tensor_shape { - dim { - size: 4 - } - } - float_val: 0.10000000149 - float_val: 0.10000000149 - float_val: 0.20000000298 - float_val: 0.20000000298 - } - } - } -} -node { - name: "PriorBox_2" - op: "PriorBox" - input: "conv6_2_h/Relu" - input: "data" - attr { - key: "aspect_ratio" - value { - tensor { - dtype: DT_FLOAT - tensor_shape { - dim { - size: 2 - } - } - float_val: 2.0 - float_val: 3.0 - } - } - } - attr { - key: "clip" - value { - b: false - } - } - attr { - key: "flip" - value { - b: true - } - } - attr { - key: "max_size" - value { - i: 162 - } - } - attr { - key: "min_size" - value { - i: 111 - } - } - attr { - key: "offset" - value { - f: 0.5 - } - } - attr { - key: "step" - value { - f: 32.0 - } - } - attr { - key: "variance" - value { - tensor { - dtype: DT_FLOAT - tensor_shape { - dim { - size: 4 - } - } - float_val: 0.10000000149 - float_val: 0.10000000149 - float_val: 0.20000000298 - float_val: 0.20000000298 - } - } - } -} -node { - name: "PriorBox_3" - op: "PriorBox" - input: "conv7_2_h/Relu" - input: "data" - attr { - key: "aspect_ratio" - value { - tensor { - dtype: DT_FLOAT - tensor_shape { - dim { - size: 2 - } - } - float_val: 2.0 - float_val: 3.0 - } - } - } - attr { - key: "clip" - value { - b: false - } - } - attr { - key: "flip" - value { - b: true - } - } - attr { - key: "max_size" - value { - i: 213 - } - } - attr { - key: "min_size" - value { - i: 162 - } - } - attr { - key: "offset" - value { - f: 0.5 - } - } - attr { - key: "step" - value { - f: 64.0 - } - } - attr { - key: "variance" - value { - tensor { - dtype: DT_FLOAT - tensor_shape { - dim { - size: 4 - } - } - float_val: 0.10000000149 - float_val: 0.10000000149 - float_val: 0.20000000298 - float_val: 0.20000000298 - } - } - } -} -node { - name: "PriorBox_4" - op: "PriorBox" - input: "conv8_2_h/Relu" - input: "data" - attr { - key: "aspect_ratio" - value { - tensor { - dtype: DT_FLOAT - tensor_shape { - dim { - size: 1 - } - } - float_val: 2.0 - } - } - } - attr { - key: "clip" - value { - b: false - } - } - attr { - key: "flip" - value { - b: true - } - } - attr { - key: "max_size" - value { - i: 264 - } - } - attr { - key: "min_size" - value { - i: 213 - } - } - attr { - key: "offset" - value { - f: 0.5 - } - } - attr { - key: "step" - value { - f: 100.0 - } - } - attr { - key: "variance" - value { - tensor { - dtype: DT_FLOAT - tensor_shape { - dim { - size: 4 - } - } - float_val: 0.10000000149 - float_val: 0.10000000149 - float_val: 0.20000000298 - float_val: 0.20000000298 - } - } - } -} -node { - name: "PriorBox_5" - op: "PriorBox" - input: "conv9_2_h/Relu" - input: "data" - attr { - key: "aspect_ratio" - value { - tensor { - dtype: DT_FLOAT - tensor_shape { - dim { - size: 1 - } - } - float_val: 2.0 - } - } - } - attr { - key: "clip" - value { - b: false - } - } - attr { - key: "flip" - value { - b: true - } - } - attr { - key: "max_size" - value { - i: 315 - } - } - attr { - key: "min_size" - value { - i: 264 - } - } - attr { - key: "offset" - value { - f: 0.5 - } - } - attr { - key: "step" - value { - f: 300.0 - } - } - attr { - key: "variance" - value { - tensor { - dtype: DT_FLOAT - tensor_shape { - dim { - size: 4 - } - } - float_val: 0.10000000149 - float_val: 0.10000000149 - float_val: 0.20000000298 - float_val: 0.20000000298 - } - } - } -} -node { - name: "mbox_priorbox" - op: "ConcatV2" - input: "PriorBox_0" - input: "PriorBox_1" - input: "PriorBox_2" - input: "PriorBox_3" - input: "PriorBox_4" - input: "PriorBox_5" - input: "mbox_loc/axis" -} -node { - name: "detection_out" - op: "DetectionOutput" - input: "mbox_loc" - input: "mbox_conf_flatten" - input: "mbox_priorbox" - attr { - key: "background_label_id" - value { - i: 0 - } - } - attr { - key: "code_type" - value { - s: "CENTER_SIZE" - } - } - attr { - key: "confidence_threshold" - value { - f: 0.00999999977648 - } - } - attr { - key: "keep_top_k" - value { - i: 200 - } - } - attr { - key: "nms_threshold" - value { - f: 0.449999988079 - } - } - attr { - key: "num_classes" - value { - i: 2 - } - } - attr { - key: "share_location" - value { - b: true - } - } - attr { - key: "top_k" - value { - i: 400 - } - } -} -node { - name: "reshape_before_softmax" - op: "Const" - attr { - key: "value" - value { - tensor { - dtype: DT_INT32 - tensor_shape { - dim { - size: 3 - } - } - int_val: 0 - int_val: -1 - int_val: 2 - } - } - } -} -library { -} \ No newline at end of file diff --git a/Gender-Age Detection/opencv_face_detector_uint8.pb b/Gender-Age Detection/opencv_face_detector_uint8.pb deleted file mode 100644 index 124bdd1acc..0000000000 Binary files a/Gender-Age Detection/opencv_face_detector_uint8.pb and /dev/null differ diff --git a/Gender-Age Detection/woman1.jpg b/Gender-Age Detection/woman1.jpg deleted file mode 100644 index f575ffb921..0000000000 Binary files a/Gender-Age Detection/woman1.jpg and /dev/null differ diff --git a/Gender-Age Detection/woman3.jpg b/Gender-Age Detection/woman3.jpg deleted file mode 100644 index 48acfafae6..0000000000 Binary files a/Gender-Age Detection/woman3.jpg and /dev/null differ