Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 9a17b99

Browse files
committed
Chapters 2 and 3 updates
1 parent e8e478e commit 9a17b99

File tree

4 files changed

+414
-362
lines changed

4 files changed

+414
-362
lines changed

‎Lesson02/.ipynb_checkpoints/Chapter_2_Case_Study-checkpoint.ipynb

Lines changed: 25 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -326,7 +326,7 @@
326326
"cell_type": "markdown",
327327
"metadata": {},
328328
"source": [
329-
"# Exercise X: Linear regression on synthetic data"
329+
"# Synthetic Data"
330330
]
331331
},
332332
{
@@ -373,6 +373,13 @@
373373
"type(X)"
374374
]
375375
},
376+
{
377+
"cell_type": "markdown",
378+
"metadata": {},
379+
"source": [
380+
"# Data for a Linear Regression"
381+
]
382+
},
376383
{
377384
"cell_type": "code",
378385
"execution_count": 19,
@@ -426,6 +433,13 @@
426433
"plt.scatter(X,y,s=1)"
427434
]
428435
},
436+
{
437+
"cell_type": "markdown",
438+
"metadata": {},
439+
"source": [
440+
"# Exercise X: Linear regression in Scikit-Learn"
441+
]
442+
},
429443
{
430444
"cell_type": "code",
431445
"execution_count": 22,
@@ -795,7 +809,7 @@
795809
"cell_type": "markdown",
796810
"metadata": {},
797811
"source": [
798-
"# Exercise X: Calculating the True Positive Rate, False Positive Rate, and Confusion Matrix"
812+
"# Exercise X: Calculating the True and False Positive and Negative Rates and Confusion Matrix in Python"
799813
]
800814
},
801815
{
@@ -1011,7 +1025,7 @@
10111025
"cell_type": "markdown",
10121026
"metadata": {},
10131027
"source": [
1014-
"# Exercise X: Discovering Predicted Probabilities and the Creating Receiver Operating Characteristic (ROC) Curve"
1028+
"# Exercise X: Obtaining Predicted Probabilities from a Trained Logistic Regression Model"
10151029
]
10161030
},
10171031
{
@@ -1241,6 +1255,14 @@
12411255
"plt.ylabel('Number of samples')"
12421256
]
12431257
},
1258+
{
1259+
"attachments": {},
1260+
"cell_type": "markdown",
1261+
"metadata": {},
1262+
"source": [
1263+
"# The Receiver Operating Characteristic (ROC) curve"
1264+
]
1265+
},
12441266
{
12451267
"cell_type": "code",
12461268
"execution_count": 62,
@@ -1328,7 +1350,6 @@
13281350
]
13291351
},
13301352
{
1331-
"attachments": {},
13321353
"cell_type": "markdown",
13331354
"metadata": {},
13341355
"source": [

‎Lesson02/Chapter_2_Case_Study.ipynb

Lines changed: 25 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -326,7 +326,7 @@
326326
"cell_type": "markdown",
327327
"metadata": {},
328328
"source": [
329-
"# Exercise X: Linear regression on synthetic data"
329+
"# Synthetic Data"
330330
]
331331
},
332332
{
@@ -373,6 +373,13 @@
373373
"type(X)"
374374
]
375375
},
376+
{
377+
"cell_type": "markdown",
378+
"metadata": {},
379+
"source": [
380+
"# Data for a Linear Regression"
381+
]
382+
},
376383
{
377384
"cell_type": "code",
378385
"execution_count": 19,
@@ -426,6 +433,13 @@
426433
"plt.scatter(X,y,s=1)"
427434
]
428435
},
436+
{
437+
"cell_type": "markdown",
438+
"metadata": {},
439+
"source": [
440+
"# Exercise X: Linear regression in Scikit-Learn"
441+
]
442+
},
429443
{
430444
"cell_type": "code",
431445
"execution_count": 22,
@@ -795,7 +809,7 @@
795809
"cell_type": "markdown",
796810
"metadata": {},
797811
"source": [
798-
"# Exercise X: Calculating the True Positive Rate, False Positive Rate, and Confusion Matrix"
812+
"# Exercise X: Calculating the True and False Positive and Negative Rates and Confusion Matrix in Python"
799813
]
800814
},
801815
{
@@ -1011,7 +1025,7 @@
10111025
"cell_type": "markdown",
10121026
"metadata": {},
10131027
"source": [
1014-
"# Exercise X: Discovering Predicted Probabilities and the Creating Receiver Operating Characteristic (ROC) Curve"
1028+
"# Exercise X: Obtaining Predicted Probabilities from a Trained Logistic Regression Model"
10151029
]
10161030
},
10171031
{
@@ -1241,6 +1255,14 @@
12411255
"plt.ylabel('Number of samples')"
12421256
]
12431257
},
1258+
{
1259+
"attachments": {},
1260+
"cell_type": "markdown",
1261+
"metadata": {},
1262+
"source": [
1263+
"# The Receiver Operating Characteristic (ROC) curve"
1264+
]
1265+
},
12441266
{
12451267
"cell_type": "code",
12461268
"execution_count": 62,
@@ -1328,7 +1350,6 @@
13281350
]
13291351
},
13301352
{
1331-
"attachments": {},
13321353
"cell_type": "markdown",
13331354
"metadata": {},
13341355
"source": [

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /