Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 2619ab6

Browse files
ggkogkouggkogkougithub-actions
authored
merge: Added bisection method (#827)
* feat: Added bisection method * Auto-update DIRECTORY.md Co-authored-by: ggkogkou <ggkogkou@ggkogkou.gr> Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
1 parent f692da2 commit 2619ab6

File tree

3 files changed

+63
-0
lines changed

3 files changed

+63
-0
lines changed

‎DIRECTORY.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -145,6 +145,7 @@
145145
* [BinaryConvert](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/BinaryConvert.js)
146146
* [BinaryExponentiationIterative](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/BinaryExponentiationIterative.js)
147147
* [BinaryExponentiationRecursive](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/BinaryExponentiationRecursive.js)
148+
* [BisectionMethod](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/BisectionMethod.js)
148149
* [CheckKishnamurthyNumber](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/CheckKishnamurthyNumber.js)
149150
* [Coordinate](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/Coordinate.js)
150151
* [CoPrimeCheck](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/CoPrimeCheck.js)

‎Maths/BisectionMethod.js

Lines changed: 46 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,46 @@
1+
/**
2+
*
3+
* @file
4+
* @brief Find real roots of a function in a specified interval [a, b], where f(a)*f(b) < 0
5+
*
6+
* @details Given a function f(x) and an interval [a, b], where f(a) * f(b) < 0, find an approximation of the root
7+
* by calculating the middle m = (a + b) / 2, checking f(m) * f(a) and f(m) * f(b) and then by choosing the
8+
* negative product that means Bolzano's theorem is applied,, define the new interval with these points. Repeat until
9+
* we get the precision we want [Wikipedia](https://en.wikipedia.org/wiki/Bisection_method)
10+
*
11+
* @author [ggkogkou](https://github.com/ggkogkou)
12+
*
13+
*/
14+
15+
const findRoot = (a, b, func, numberOfIterations) => {
16+
// Check if a given real value belongs to the function's domain
17+
const belongsToDomain = (x, f) => {
18+
const res = f(x)
19+
return !Number.isNaN(res)
20+
}
21+
if (!belongsToDomain(a, func) || !belongsToDomain(b, func)) throw Error("Given interval is not a valid subset of function's domain")
22+
23+
// Bolzano theorem
24+
const hasRoot = (a, b, func) => {
25+
return func(a) * func(b) < 0
26+
}
27+
if (hasRoot(a, b, func) === false) { throw Error('Product f(a)*f(b) has to be negative so that Bolzano theorem is applied') }
28+
29+
// Declare m
30+
const m = (a + b) / 2
31+
32+
// Recursion terminal condition
33+
if (numberOfIterations === 0) { return m }
34+
35+
// Find the products of f(m) and f(a), f(b)
36+
const fm = func(m)
37+
const prod1 = fm * func(a)
38+
const prod2 = fm * func(b)
39+
40+
// Depending on the sign of the products above, decide which position will m fill (a's or b's)
41+
if (prod1 > 0 && prod2 < 0) return findRoot(m, b, func, --numberOfIterations)
42+
else if (prod1 < 0 && prod2 > 0) return findRoot(a, m, func, --numberOfIterations)
43+
else throw Error('Unexpected behavior')
44+
}
45+
46+
export { findRoot }

‎Maths/test/BisectionMethod.test.js

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,16 @@
1+
import { findRoot } from '../BisectionMethod'
2+
3+
test('Equation f(x) = x^2 - 3*x + 2 = 0, has root x = 1 in [a, b] = [0, 1.5]', () => {
4+
const root = findRoot(0, 1.5, (x) => { return Math.pow(x, 2) - 3 * x + 2 }, 8)
5+
expect(root).toBe(0.9990234375)
6+
})
7+
8+
test('Equation f(x) = ln(x) + sqrt(x) + π*x^2 = 0, has root x = 0.36247037 in [a, b] = [0, 10]', () => {
9+
const root = findRoot(0, 10, (x) => { return Math.log(x) + Math.sqrt(x) + Math.PI * Math.pow(x, 2) }, 32)
10+
expect(Number(Number(root).toPrecision(8))).toBe(0.36247037)
11+
})
12+
13+
test('Equation f(x) = sqrt(x) + e^(2*x) - 8*x = 0, has root x = 0.93945851 in [a, b] = [0.5, 100]', () => {
14+
const root = findRoot(0.5, 100, (x) => { return Math.exp(2 * x) + Math.sqrt(x) - 8 * x }, 32)
15+
expect(Number(Number(root).toPrecision(8))).toBe(0.93945851)
16+
})

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /