Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 6cdab86

Browse files
Add files via upload
1 parent 1953708 commit 6cdab86

File tree

4 files changed

+741
-0
lines changed

4 files changed

+741
-0
lines changed

‎object-detection.pbtxt

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,16 @@
1+
item {
2+
id: 1
3+
name: 'up'
4+
}
5+
item {
6+
id:2
7+
name:"down"
8+
}
9+
item {
10+
id:3
11+
name:"left"
12+
}
13+
item {
14+
id:4
15+
name:"right"
16+
}

‎ssd_mobilenet_v1_pets.config

Lines changed: 196 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,196 @@
1+
# SSD with Mobilenet v1, configured for Oxford-IIIT Pets Dataset.
2+
# Users should configure the fine_tune_checkpoint field in the train config as
3+
# well as the label_map_path and input_path fields in the train_input_reader and
4+
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
5+
# should be configured.
6+
7+
model {
8+
ssd {
9+
num_classes: 4
10+
box_coder {
11+
faster_rcnn_box_coder {
12+
y_scale: 10.0
13+
x_scale: 10.0
14+
height_scale: 5.0
15+
width_scale: 5.0
16+
}
17+
}
18+
matcher {
19+
argmax_matcher {
20+
matched_threshold: 0.5
21+
unmatched_threshold: 0.5
22+
ignore_thresholds: false
23+
negatives_lower_than_unmatched: true
24+
force_match_for_each_row: true
25+
}
26+
}
27+
similarity_calculator {
28+
iou_similarity {
29+
}
30+
}
31+
anchor_generator {
32+
ssd_anchor_generator {
33+
num_layers: 6
34+
min_scale: 0.2
35+
max_scale: 0.95
36+
aspect_ratios: 1.0
37+
aspect_ratios: 2.0
38+
aspect_ratios: 0.5
39+
aspect_ratios: 3.0
40+
aspect_ratios: 0.3333
41+
}
42+
}
43+
image_resizer {
44+
fixed_shape_resizer {
45+
height: 300
46+
width: 300
47+
}
48+
}
49+
box_predictor {
50+
convolutional_box_predictor {
51+
min_depth: 0
52+
max_depth: 0
53+
num_layers_before_predictor: 0
54+
use_dropout: false
55+
dropout_keep_probability: 0.8
56+
kernel_size: 1
57+
box_code_size: 4
58+
apply_sigmoid_to_scores: false
59+
conv_hyperparams {
60+
activation: RELU_6,
61+
regularizer {
62+
l2_regularizer {
63+
weight: 0.00004
64+
}
65+
}
66+
initializer {
67+
truncated_normal_initializer {
68+
stddev: 0.03
69+
mean: 0.0
70+
}
71+
}
72+
batch_norm {
73+
train: true,
74+
scale: true,
75+
center: true,
76+
decay: 0.9997,
77+
epsilon: 0.001,
78+
}
79+
}
80+
}
81+
}
82+
feature_extractor {
83+
type: 'ssd_mobilenet_v1'
84+
min_depth: 16
85+
depth_multiplier: 1.0
86+
conv_hyperparams {
87+
activation: RELU_6,
88+
regularizer {
89+
l2_regularizer {
90+
weight: 0.00004
91+
}
92+
}
93+
initializer {
94+
truncated_normal_initializer {
95+
stddev: 0.03
96+
mean: 0.0
97+
}
98+
}
99+
batch_norm {
100+
train: true,
101+
scale: true,
102+
center: true,
103+
decay: 0.9997,
104+
epsilon: 0.001,
105+
}
106+
}
107+
}
108+
loss {
109+
classification_loss {
110+
weighted_sigmoid {
111+
anchorwise_output: true
112+
}
113+
}
114+
localization_loss {
115+
weighted_smooth_l1 {
116+
anchorwise_output: true
117+
}
118+
}
119+
hard_example_miner {
120+
num_hard_examples: 3000
121+
iou_threshold: 0.99
122+
loss_type: CLASSIFICATION
123+
max_negatives_per_positive: 3
124+
min_negatives_per_image: 0
125+
}
126+
classification_weight: 1.0
127+
localization_weight: 1.0
128+
}
129+
normalize_loss_by_num_matches: true
130+
post_processing {
131+
batch_non_max_suppression {
132+
score_threshold: 1e-8
133+
iou_threshold: 0.6
134+
max_detections_per_class: 100
135+
max_total_detections: 100
136+
}
137+
score_converter: SIGMOID
138+
}
139+
}
140+
}
141+
142+
train_config: {
143+
batch_size: 16
144+
optimizer {
145+
rms_prop_optimizer: {
146+
learning_rate: {
147+
exponential_decay_learning_rate {
148+
initial_learning_rate: 0.004
149+
decay_steps: 800720
150+
decay_factor: 0.95
151+
}
152+
}
153+
momentum_optimizer_value: 0.9
154+
decay: 0.9
155+
epsilon: 1.0
156+
}
157+
}
158+
fine_tune_checkpoint: "D:/models/research/images/ssd_mobilenet_v1_coco_11_06_2017/model.ckpt"
159+
from_detection_checkpoint: true
160+
# Note: The below line limits the training process to 200K steps, which we
161+
# empirically found to be sufficient enough to train the pets dataset. This
162+
# effectively bypasses the learning rate schedule (the learning rate will
163+
# never decay). Remove the below line to train indefinitely.
164+
num_steps: 200000
165+
data_augmentation_options {
166+
random_horizontal_flip {
167+
}
168+
}
169+
data_augmentation_options {
170+
ssd_random_crop {
171+
}
172+
}
173+
}
174+
175+
train_input_reader: {
176+
tf_record_input_reader {
177+
input_path: "D:/models/research/images/data/train.record"
178+
}
179+
label_map_path: "D:/models/research/images/data/object-detection.pbtxt"
180+
}
181+
182+
eval_config: {
183+
num_examples: 2000
184+
# Note: The below line limits the evaluation process to 10 evaluations.
185+
# Remove the below line to evaluate indefinitely.
186+
max_evals: 10
187+
}
188+
189+
eval_input_reader: {
190+
tf_record_input_reader {
191+
input_path: "D:/models/research/images/data/test.record"
192+
}
193+
label_map_path: "D:/models/research/images/data/object-detection.pbtxt"
194+
shuffle: false
195+
num_readers: 1
196+
}

‎test_labels.csv

Lines changed: 88 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,88 @@
1+
,filename,width,height,class,xmin,ymin,xmax,ymax
2+
0,101.jpg,640,480,down,180,21,398,265
3+
1,115.jpg,640,480,down,211,70,398,349
4+
2,116.jpg,640,480,down,180,64,386,357
5+
3,117.jpg,640,480,down,167,58,375,367
6+
4,118.jpg,640,480,down,165,61,374,372
7+
5,119.jpg,640,480,down,162,62,374,375
8+
6,174.jpg,640,480,down,365,56,603,430
9+
7,194.jpg,640,480,down,254,72,480,384
10+
8,201.jpg,640,480,down,239,67,476,378
11+
9,203.jpg,640,480,down,217,70,459,383
12+
10,205.jpg,640,480,down,183,76,425,387
13+
11,206.jpg,640,480,down,158,75,397,391
14+
12,22.jpg,640,480,down,170,136,343,395
15+
13,23_23_23_23.jpg,640,480,up,85,174,293,473
16+
14,24_24_24_24.jpg,640,480,up,73,164,279,455
17+
15,256_256_256_256.jpg,640,480,up,359,171,587,445
18+
16,257_257_257_257.jpg,640,480,up,370,173,567,455
19+
17,259.jpg,640,480,down,36,98,269,458
20+
18,25_25_25_25.jpg,640,480,up,67,162,277,479
21+
19,272.jpg,640,480,down,220,100,450,475
22+
20,277.jpg,640,480,down,233,79,478,455
23+
21,28.jpg,640,480,down,116,142,288,389
24+
22,416_416_416_416.jpg,640,480,up,185,149,461,454
25+
23,417_417_417_417.jpg,640,480,up,121,121,482,453
26+
24,418_418_418_418.jpg,640,480,up,195,148,505,444
27+
25,43.jpg,640,480,down,272,142,485,396
28+
26,45.jpg,640,480,down,269,144,485,394
29+
27,49.jpg,640,480,down,286,146,505,398
30+
28,53.jpg,640,480,down,294,146,522,401
31+
29,59_59_59_59.jpg,640,480,up,100,185,348,475
32+
30,61_61_61_61.jpg,640,480,up,69,183,320,467
33+
31,62_62_62_62.jpg,640,480,up,49,177,329,440
34+
32,68.jpg,640,480,down,248,131,455,414
35+
33,74_74_74_74.jpg,640,480,up,39,176,317,460
36+
34,75.jpg,640,480,down,199,119,381,427
37+
35,75_75_75_75.jpg,640,480,up,39,183,281,466
38+
36,77.jpg,640,480,down,205,121,382,430
39+
37,84_84_84_84.jpg,640,480,up,7,186,267,479
40+
38,85_85_85_85.jpg,640,480,up,8,180,274,480
41+
39,WIN_20190209_11_00_28_Pro.jpg,1280,720,right,583,463,928,674
42+
40,WIN_20190209_11_00_31_Pro.jpg,1280,720,right,328,362,643,580
43+
41,WIN_20190209_11_00_49_Pro.jpg,1280,720,right,370,65,681,304
44+
42,WIN_20190209_11_00_51_Pro.jpg,1280,720,right,328,164,678,388
45+
43,WIN_20190209_11_01_00_Pro.jpg,1280,720,right,336,272,556,437
46+
44,WIN_20190209_11_01_02_Pro.jpg,1280,720,right,321,301,542,436
47+
45,WIN_20190209_11_01_04_Pro.jpg,1280,720,right,318,276,520,425
48+
46,WIN_20190209_11_01_06_Pro.jpg,1280,720,right,504,287,699,405
49+
47,WIN_20190209_11_01_08_Pro.jpg,1280,720,right,561,205,734,361
50+
48,WIN_20190209_11_01_12_Pro.jpg,1280,720,right,83,203,298,361
51+
49,WIN_20190209_11_01_17_Pro.jpg,1280,720,right,679,269,888,412
52+
50,WIN_20190209_11_01_20_Pro.jpg,1280,720,right,152,267,342,427
53+
51,WIN_20190209_11_01_21_Pro.jpg,1280,720,right,185,155,355,330
54+
52,WIN_20190209_11_01_23_Pro.jpg,1280,720,right,140,333,331,478
55+
53,WIN_20190209_11_01_25_Pro.jpg,1280,720,right,88,349,486,618
56+
54,WIN_20190209_11_01_26_Pro.jpg,1280,720,right,129,275,465,623
57+
55,WIN_20190209_11_01_32_Pro.jpg,1280,720,right,48,532,417,718
58+
56,WIN_20190209_11_01_34_Pro.jpg,1280,720,right,27,128,459,523
59+
57,WIN_20190209_11_01_38_Pro.jpg,1280,720,right,158,233,590,514
60+
58,WIN_20190209_11_01_40_Pro.jpg,1280,720,right,154,218,552,488
61+
59,WIN_20190209_11_01_42_Pro.jpg,1280,720,right,162,89,559,450
62+
60,WIN_20190209_11_01_56_Pro.jpg,1280,720,right,564,307,780,465
63+
61,WIN_20190209_11_01_57_Pro.jpg,1280,720,right,554,235,780,400
64+
62,WIN_20190209_11_01_59_Pro.jpg,1280,720,right,521,111,768,275
65+
63,WIN_20190209_11_18_27_Pro.jpg,1280,720,left,120,377,606,670
66+
64,WIN_20190209_11_18_30_Pro.jpg,1280,720,left,197,253,755,613
67+
65,WIN_20190209_11_18_33_Pro.jpg,1280,720,left,120,293,327,431
68+
66,WIN_20190209_11_18_35_Pro.jpg,1280,720,left,117,269,502,483
69+
67,WIN_20190209_11_18_37_Pro.jpg,1280,720,left,284,258,824,625
70+
68,WIN_20190209_11_18_40_Pro.jpg,1280,720,left,432,238,1045,605
71+
69,WIN_20190209_11_18_42_Pro.jpg,1280,720,left,18,254,654,649
72+
70,WIN_20190209_11_18_45_Pro.jpg,1280,720,left,406,333,590,450
73+
71,WIN_20190209_11_18_48_Pro.jpg,1280,720,left,474,275,727,405
74+
72,WIN_20190209_11_18_50_Pro.jpg,1280,720,left,659,225,879,371
75+
73,WIN_20190209_11_19_09_Pro.jpg,1280,720,left,295,240,475,372
76+
74,WIN_20190209_11_19_11_Pro.jpg,1280,720,left,254,80,495,227
77+
75,WIN_20190209_11_19_13_Pro.jpg,1280,720,left,531,160,702,291
78+
76,WIN_20190209_11_19_15_Pro.jpg,1280,720,left,556,174,743,296
79+
77,WIN_20190209_11_19_19_Pro.jpg,1280,720,left,455,156,732,339
80+
78,WIN_20190209_11_19_22_Pro.jpg,1280,720,left,329,277,692,500
81+
79,WIN_20190209_11_19_24_Pro.jpg,1280,720,left,336,207,713,470
82+
80,WIN_20190209_11_19_27_Pro.jpg,1280,720,left,284,259,484,387
83+
81,WIN_20190209_11_19_29_Pro.jpg,1280,720,left,259,222,449,338
84+
82,WIN_20190209_11_19_32_Pro.jpg,1280,720,left,312,298,476,393
85+
83,WIN_20190209_11_19_36_Pro.jpg,1280,720,left,310,123,486,230
86+
84,WIN_20190209_11_19_39_Pro.jpg,1280,720,left,515,211,651,285
87+
85,WIN_20190209_11_19_41_Pro.jpg,1280,720,left,549,197,692,279
88+
86,WIN_20190209_11_19_43_Pro.jpg,1280,720,left,534,152,692,280

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /