Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 087db55

Browse files
Add files via upload
1 parent 6938941 commit 087db55

File tree

1 file changed

+112
-0
lines changed

1 file changed

+112
-0
lines changed

‎play_game.py‎

Lines changed: 112 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,112 @@
1+
import os
2+
import sys
3+
from multiprocessing import Value
4+
5+
import cv2
6+
import numpy as np
7+
import pyautogui
8+
import tensorflow as tf
9+
10+
cap = cv2.VideoCapture(0)
11+
12+
sys.path.append("..")
13+
14+
from object_detection.utils import label_map_util
15+
16+
from object_detection.utils import visualization_utils as vis_util
17+
18+
# # Model preparation
19+
20+
# Path to frozen detection graph. This is the actual model that is used for the object detection.
21+
PATH_TO_CKPT = 'snake/frozen_inference_graph.pb'
22+
23+
# List of the strings that is used to add correct label for each box.
24+
PATH_TO_LABELS = os.path.join('images/data', 'object-detection.pbtxt')
25+
26+
NUM_CLASSES = 4
27+
28+
# ## Load a (frozen) Tensorflow model into memory.
29+
detection_graph = tf.Graph()
30+
with detection_graph.as_default():
31+
od_graph_def = tf.GraphDef()
32+
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
33+
serialized_graph = fid.read()
34+
od_graph_def.ParseFromString(serialized_graph)
35+
tf.import_graph_def(od_graph_def, name='')
36+
37+
# ## Loading label map
38+
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
39+
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
40+
use_display_name=True)
41+
category_index = label_map_util.create_category_index(categories)
42+
43+
with detection_graph.as_default():
44+
# from directkeys import PressKey, ReleaseKey, W
45+
46+
# enter your monitor's resolution or use a library to fetch this - I had to hard code due to issues with
47+
# dual monitor setup
48+
x, y = 288, 512
49+
50+
# init process safe variables for workers
51+
objectX, objectY = Value('d', 0.0), Value('d', 0.0)
52+
objectX_previous = None
53+
objectY_previous = None
54+
with tf.Session(graph=detection_graph) as sess:
55+
# Definite input and output Tensors for detection_graph
56+
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
57+
# Each box represents a part of the image where a particular object was detected.
58+
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
59+
# Each score represent how level of confidence for each of the objects.
60+
# Score is shown on the result image, together with the class label.
61+
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
62+
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
63+
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
64+
while True:
65+
ret, image_np = cap.read()
66+
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
67+
image_np_expanded = np.expand_dims(image_np, axis=0)
68+
# Actual detection.
69+
(boxes, scores, classes, num) = sess.run(
70+
[detection_boxes, detection_scores, detection_classes, num_detections],
71+
feed_dict={image_tensor: image_np_expanded})
72+
# Visualization of the results of a detection.
73+
vis_util.visualize_boxes_and_labels_on_image_array(
74+
image_np,
75+
np.squeeze(boxes),
76+
np.squeeze(classes).astype(np.int32),
77+
np.squeeze(scores),
78+
category_index,
79+
use_normalized_coordinates=True,
80+
line_thickness=8)
81+
cv2.imshow('controls detection', image_np)
82+
if cv2.waitKey(50) & amp; 0xFF == ord('q'):
83+
cv2.destroyAllWindows()
84+
break
85+
86+
'''MOVE'''
87+
# press 'w' if bounding box of finger detected
88+
objects = np.where(classes[0] == 1)[0]
89+
90+
# calculate center of box if detection exceeds threshold
91+
if len(objects) > 0 and scores[0][objects][0] > 0.15:
92+
pyautogui.press('up')
93+
94+
objects = np.where(classes[0] == 2)[0]
95+
96+
# calculate center of box if detection exceeds threshold
97+
if len(objects) > 0 and scores[0][objects][0] > 0.15:
98+
pyautogui.press('down')
99+
100+
objects = np.where(classes[0] == 3)[0]
101+
102+
# calculate center of box if detection exceeds threshold
103+
if len(objects) > 0 and scores[0][objects][0] > 0.15:
104+
pyautogui.press('left')
105+
106+
objects = np.where(classes[0] == 4)[0]
107+
108+
# calculate center of box if detection exceeds threshold
109+
if len(objects) > 0 and scores[0][objects][0] > 0.15:
110+
pyautogui.press('right')
111+
112+
cap.release()

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /