Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit f9b84e2

Browse files
added extract objects example
1 parent 3e47cbc commit f9b84e2

File tree

1 file changed

+133
-0
lines changed

1 file changed

+133
-0
lines changed
Lines changed: 133 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,133 @@
1+
import numpy as np
2+
import argparse
3+
import tensorflow as tf
4+
import cv2
5+
import pathlib
6+
import os
7+
import datetime
8+
import pandas as pd
9+
from PIL import Image
10+
11+
from object_detection.utils import ops as utils_ops
12+
from object_detection.utils import label_map_util
13+
from object_detection.utils import visualization_utils as vis_util
14+
15+
# patch tf1 into `utils.ops`
16+
utils_ops.tf = tf.compat.v1
17+
18+
# Patch the location of gfile
19+
tf.gfile = tf.io.gfile
20+
21+
22+
def load_model(model_path):
23+
model = tf.saved_model.load(model_path)
24+
return model
25+
26+
27+
def run_inference_for_single_image(model, image):
28+
image = np.asarray(image)
29+
# The input needs to be a tensor, convert it using `tf.convert_to_tensor`.
30+
input_tensor = tf.convert_to_tensor(image)
31+
# The model expects a batch of images, so add an axis with `tf.newaxis`.
32+
input_tensor = input_tensor[tf.newaxis,...]
33+
34+
# Run inference
35+
output_dict = model(input_tensor)
36+
37+
# All outputs are batches tensors.
38+
# Convert to numpy arrays, and take index [0] to remove the batch dimension.
39+
# We're only interested in the first num_detections.
40+
num_detections = int(output_dict.pop('num_detections'))
41+
output_dict = {key: value[0, :num_detections].numpy()
42+
for key, value in output_dict.items()}
43+
output_dict['num_detections'] = num_detections
44+
45+
# detection_classes should be ints.
46+
output_dict['detection_classes'] = output_dict['detection_classes'].astype(np.int64)
47+
48+
# Handle models with masks:
49+
if 'detection_masks' in output_dict:
50+
# Reframe the the bbox mask to the image size.
51+
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
52+
output_dict['detection_masks'], output_dict['detection_boxes'],
53+
image.shape[0], image.shape[1])
54+
detection_masks_reframed = tf.cast(detection_masks_reframed > 0.5, tf.uint8)
55+
output_dict['detection_masks_reframed'] = detection_masks_reframed.numpy()
56+
57+
return output_dict
58+
59+
60+
def run_inference(model, category_index, cap, threshold, show_video_steam, label_to_look_for, output_directory):
61+
# Create output directory if not already created
62+
os.makedirs(output_directory, exist_ok=True)
63+
os.makedirs(output_directory+'/images', exist_ok=True)
64+
65+
if os.path.exists(output_directory+'/results.csv'):
66+
df = pd.read_csv(output_directory+'/results.csv')
67+
else:
68+
df = pd.DataFrame(columns=['timestamp', 'img_path'])
69+
70+
while True:
71+
ret, image_np = cap.read()
72+
73+
# Copy image for later
74+
image_show = np.copy(image_np)
75+
76+
image_height, image_width, _ = image_np.shape
77+
78+
# Actual detection.
79+
output_dict = run_inference_for_single_image(model, image_np)
80+
81+
if show_video_steam:
82+
# Visualization of the results of a detection.
83+
vis_util.visualize_boxes_and_labels_on_image_array(
84+
image_np,
85+
output_dict['detection_boxes'],
86+
output_dict['detection_classes'],
87+
output_dict['detection_scores'],
88+
category_index,
89+
instance_masks=output_dict.get('detection_masks_reframed', None),
90+
use_normalized_coordinates=True,
91+
line_thickness=8)
92+
cv2.imshow('object_detection', cv2.resize(image_np, (800, 600)))
93+
if cv2.waitKey(25) & 0xFF == ord('q'):
94+
cap.release()
95+
cv2.destroyAllWindows()
96+
break
97+
98+
# Get data(label, xmin, ymin, xmax, ymax)
99+
output = []
100+
for index, score in enumerate(output_dict['detection_scores']):
101+
if score < threshold:
102+
continue
103+
label = category_index[output_dict['detection_classes'][index]]['name']
104+
ymin, xmin, ymax, xmax = output_dict['detection_boxes'][index]
105+
output.append((label, int(xmin * image_width), int(ymin * image_height), int(xmax * image_width), int(ymax * image_height)))
106+
107+
# Save incident (could be extended to send a email or something)
108+
for l, x_min, y_min, x_max, y_max in output:
109+
if l == label_to_look_for:
110+
array = cv2.cvtColor(np.array(image_show), cv2.COLOR_RGB2BGR)
111+
image = Image.fromarray(array)
112+
cropped_img = image.crop((x_min, y_min, x_max, y_max))
113+
file_path = output_directory+'/images/'+str(len(df))+'.jpg'
114+
cropped_img.save(file_path, "JPEG", icc_profile=cropped_img.info.get('icc_profile'))
115+
df.loc[len(df)] = [datetime.datetime.now(), file_path]
116+
df.to_csv(output_directory+'/results.csv', index=None)
117+
118+
119+
if __name__ == '__main__':
120+
parser = argparse.ArgumentParser(description='Detect objects inside webcam videostream')
121+
parser.add_argument('-m', '--model', type=str, required=True, help='Model Path')
122+
parser.add_argument('-l', '--labelmap', type=str, required=True, help='Path to Labelmap')
123+
parser.add_argument('-t', '--threshold', type=float, default=0.5, help='Threshold for bounding boxes')
124+
parser.add_argument('-s', '--show', default=True, action='store_true', help='Show window')
125+
parser.add_argument('-la', '--label', default='person', type=str, help='Label name to detect')
126+
parser.add_argument('-o', '--output_directory', default='results', type=str, help='Directory for the outputs')
127+
args = parser.parse_args()
128+
129+
detection_model = load_model(args.model)
130+
category_index = label_map_util.create_category_index_from_labelmap(args.labelmap, use_display_name=True)
131+
132+
cap = cv2.VideoCapture(2)
133+
run_inference(detection_model, category_index, cap, args.threshold, args.show, args.label, args.output_directory)

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /