Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 89858b9

Browse files
Add sieve and combinatorics to math
1 parent b8df5af commit 89858b9

File tree

4 files changed

+147
-10
lines changed

4 files changed

+147
-10
lines changed

‎Library/Math/Combinatorics.cpp

Lines changed: 101 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,101 @@
1+
#include <bits/stdc++.h>
2+
#include "fexp.cpp" //LATEX_IGNORED_LINE
3+
#define ll long long
4+
using namespace std;
5+
6+
struct Combin {
7+
vector<ll> fat, finv;
8+
Combin(int n){
9+
fat.assign(n+1, 1);
10+
for(int i=2; i<=n; i++) fat[i] = fat[i-1]*i % mod;
11+
finv.assign(n+1, fexp(fat.back(), mod-2));
12+
for(int i=n; i>0; i--) finv[i-1] = finv[i]*i % mod;
13+
}
14+
ll choose(ll n, ll k){ assert(n < fat.size()); return k>n||k<0 ? 0 : fat[n] * finv[k] % mod * finv[n-k] % mod; } //precalc O(N)
15+
ll chooseLinear(ll n, ll k){ //O(k) || min(k, n-k);
16+
k = min(k, n-k);
17+
ll ans = 1, inv=1;
18+
for(int i=n; i>k; i--) ans = ans*i % mod;
19+
for(int i=1; i<=n-k; i++) inv = inv*i % mod;
20+
return ans * fexp(inv, mod-2) % mod;
21+
}
22+
ll permRepetition(const vector<int> &cnt){
23+
ll n = accumulate(begin(cnt), end(cnt), 0ll), ans = fat[n];
24+
for(int x : cnt) ans = ans * finv[x] % mod;
25+
return ans;
26+
}
27+
ll sumNci (ll n){ return fexp(2, n); } //for(i=0; i<=n) sum+=choose(n, i);
28+
ll sumicK (ll n, ll k){ return choose(n+1, k+1); } //for(i=0; i<=n) sum+=choose(i, k);
29+
ll sumNKcK(ll n, ll k){ return choose(n+k+1, k); } //for(i=0; i<=k) sum+=choose(n+i, i);
30+
ll sumNsqr(ll n){ return choose(n+n, n); } //for(i=0; i<=n) sum += pow(choose(n, i), 2);
31+
ll catalan(ll n){ return choose(2*n, n) * fexp(n+1, mod-2) % mod; }
32+
// Stars and Bars
33+
ll starsBars(ll n, ll k){ return choose(n+k-1, n); } //O(choose)
34+
ll starsLowerBound(ll n, const vector<ll> &lw){ //O(k)
35+
for(auto x : lw) n -= x;
36+
return starsBars(n, lw.size());
37+
}
38+
ll starsUpperBound(ll n, ll k, ll up){ //O(k)
39+
ll ans = 0;
40+
for(int i=0; i<=k; i++)
41+
ans += choose(k, i) * choose(n+k-1-(up+1)*i, k-1) % mod * (i&1? -1:+1);
42+
return ans;
43+
}
44+
ll starsUpperBound(ll M, const vector<ll> &up){ //O(N*M)
45+
int N = up.size();
46+
vector dp(up.size()+1, vector<ll>(N+1));
47+
for(int m=0; m<=M; m++) dp[0][m] = choose(N+m-1, m);
48+
for(int n=1; n<=N; n++)
49+
for(int m=0; m<=M; m++)
50+
dp[n][m] = dp[n-1][m] - (m-up[n-1]-1 < 0 ? 0 : dp[n-1][m-up[n-1]-1]);
51+
return dp[N][M];
52+
}
53+
ll starsLowerUpperBound(ll n, const vector<ll> &lw, const vector<ll> &up){ //O(N*M)
54+
for(auto x : lw) n -= x;
55+
return starsUpperBound(n, up);
56+
}
57+
};
58+
59+
const int MAXN = 5e3;
60+
ll pascal[MAXN][MAXN];
61+
// pascal[n][k] = choose(n, k);
62+
63+
void Pascal(int N){
64+
pascal[0][0] = 1;
65+
for(int n=1; n<=N; n++){
66+
pascal[n][0] = pascal[n][n] = 1;
67+
for(int k=1; k<n; k++)
68+
pascal[n][k] = (pascal[n-1][k-1] + pascal[n-1][k]) % mod;
69+
}
70+
}
71+
72+
// LATEX_IGNORED_BEGIN pra testar as funções
73+
int main(){
74+
int N = 10;
75+
Pascal(N);
76+
77+
for(int n=0; n<=N; cout << endl, n++)
78+
for(int k=0; k<=n; k++)
79+
cout << pascal[n][k] << "\t";
80+
cout << endl;
81+
82+
Combin cb(N);
83+
84+
for(int n=0; n<=N; cout << endl, n++)
85+
for(int k=0; k<=n; k++)
86+
cout << cb.choose(n, k) << "\t";
87+
cout << endl;
88+
89+
for(int n=0; n<=N; cout << endl, n++)
90+
for(int k=0; k<=n; k++)
91+
cout << cb.chooseLinear(n, k) << "\t";
92+
cout << endl;
93+
94+
for(int n=0; n<=N; n++) cout << cb.fat[n] << "\t";
95+
cout << endl;
96+
for(int n=0; n<=N; n++) cout << n << "\t";
97+
cout << endl;
98+
for(int n=0; n<=N; n++) cout << cb.finv[n] << " ";
99+
cout << endl;
100+
}
101+
// LATEX_IGNORED_END

‎Library/Math/Sieve.cpp

Lines changed: 30 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,30 @@
1+
#include <bits/stdc++.h>
2+
using namespace std;
3+
4+
vector<int> calc_prime(int n){ // O(n log n)
5+
vector<int> prime(n+1, 1);
6+
for(int i=2; i<=n; i++) if(prime[i] == i)
7+
for(int j=i+i; j<=n; j+=i)
8+
prime[j] = false;
9+
return prime;
10+
}
11+
12+
vector<int> calc_phi(int n){ // O(n log n)
13+
vector<int> phi(n+1);
14+
for(int i=0; i<=n; i++) phi[i] = i;
15+
for(int i=2; i<=n; i++) if(phi[i] == i)
16+
for(int j=i; j<=n; j+=i)
17+
phi[j] -= phi[j] / i;
18+
return phi;
19+
}
20+
21+
vector<int> calc_mobius(int n){ // O(n log n)
22+
vector<int> mobius(n+1, 1), prime(n+1, 1);
23+
for(int i=2, j; i<=n; i++) if(prime[i])
24+
for(mobius[i]=-1, j=i+i; j<=n; j+=i){
25+
if((j/i)%i) mobius[j] *= -1;
26+
else mobius[j] = 0;
27+
prime[j] = false;
28+
}
29+
return mobius;
30+
}

‎Library/Theorems/Math.tex

Lines changed: 16 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -69,16 +69,22 @@ \subsection{Propriedades Matemáticas}
6969
\]
7070

7171
\item \textbf{Propriedades de Coeficientes Binomiais:}
72-
\begin{align*}
73-
\binom{N}{K} = \binom{N}{N - K} &= \frac{N}{K} \binom{N - 1}{K - 1} \\
74-
\sum_{k=0}^{m} (-1)^k \binom{n}{k} &= (-1)^m \binom{n - 1}{m} \\
75-
\sum_{m=0}^{n} \binom{m}{k} &= \binom{n+1}{k+1} \\
76-
\sum_{k=0}^{m} \binom{n + k}{k} &= \binom{n + m + 1}{m} \\
77-
\sum_{k=0}^{n} \binom{n}{k}^2 &= \binom{2n}{n} \\
78-
\sum_{k=0}^{n} \binom{n}{k} &= 2^n \\
79-
\sum_{k=0}^{n} k \binom{n}{k} &= n \cdot 2^{n - 1} \\
80-
\sum_{k=0}^{n} \binom{n-k}{k} &= F_{n+1}
81-
\end{align*}
72+
% \begin{align*}
73+
% \end{align*}
74+
% \vspace{-2pt}
75+
\begin{alignat*}{2}
76+
\binom{N}{N - K} &= \frac{N}{K} \binom{N - 1}{K - 1} = \binom{N}{K} &\\
77+
\sum_{k=0}^{m} (-1)^k & \binom{n}{k} = (-1)^m \binom{n - 1}{m} &\\
78+
\sum_{k=0}^{n} \binom{n}{k} &= 2^n , &
79+
\sum_{k=0}^{n} k \binom{n}{k} = n \cdot 2^{n - 1} \\
80+
\sum_{m=0}^{n} \binom{m}{k} &= \binom{n+1}{k+1} , &
81+
\sum_{k=0}^{n} \binom{n-k}{k} = F_{n+1} \\
82+
\sum_{k=0}^{m} \binom{n + k}{k} &= \binom{n + m + 1}{m} , &
83+
\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}
84+
\end{alignat*}
85+
86+
\item \textbf{Triângulo de Pascal} \\[0.5ex]
87+
\includegraphics[width=\linewidth]{math/pascal}
8288

8389
\item \textbf{Identidades Clássicas:}
8490
\begin{itemize}

‎pdf/images/math/pascal.jpg

109 KB
Loading[フレーム]

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /