|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Cleaning Data for Analysis\n", |
| 8 | + "\n", |
| 9 | + "## Data Types\n", |
| 10 | + "\n", |
| 11 | + "There may be times we want to convert from one data type to another\n", |
| 12 | + "\n", |
| 13 | + "**Categorical Data**\n", |
| 14 | + "\n", |
| 15 | + "Columns that contain categorical data, such as Male / Female can be converting into 'category' dtype\n", |
| 16 | + "* Can make the DataFrame smaller in memory\n", |
| 17 | + "* Can make them be utilized by other Python libraries" |
| 18 | + ] |
| 19 | + }, |
| 20 | + { |
| 21 | + "cell_type": "code", |
| 22 | + "execution_count": 1, |
| 23 | + "metadata": {}, |
| 24 | + "outputs": [ |
| 25 | + { |
| 26 | + "name": "stdout", |
| 27 | + "output_type": "stream", |
| 28 | + "text": [ |
| 29 | + "<class 'pandas.core.frame.DataFrame'>\n", |
| 30 | + "RangeIndex: 244 entries, 0 to 243\n", |
| 31 | + "Data columns (total 7 columns):\n", |
| 32 | + "total_bill 244 non-null float64\n", |
| 33 | + "tip 244 non-null float64\n", |
| 34 | + "sex 244 non-null object\n", |
| 35 | + "smoker 244 non-null object\n", |
| 36 | + "day 244 non-null object\n", |
| 37 | + "time 244 non-null object\n", |
| 38 | + "size 244 non-null int64\n", |
| 39 | + "dtypes: float64(2), int64(1), object(4)\n", |
| 40 | + "memory usage: 13.4+ KB\n" |
| 41 | + ] |
| 42 | + } |
| 43 | + ], |
| 44 | + "source": [ |
| 45 | + "import pandas as pd\n", |
| 46 | + "df = pd.read_csv('https://assets.datacamp.com/production/repositories/666/datasets/b064fa9e0684a38ac15b0a19845367c29fde978d/tips.csv')\n", |
| 47 | + "df.info()" |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "cell_type": "code", |
| 52 | + "execution_count": 2, |
| 53 | + "metadata": {}, |
| 54 | + "outputs": [ |
| 55 | + { |
| 56 | + "name": "stdout", |
| 57 | + "output_type": "stream", |
| 58 | + "text": [ |
| 59 | + "<class 'pandas.core.frame.DataFrame'>\n", |
| 60 | + "RangeIndex: 244 entries, 0 to 243\n", |
| 61 | + "Data columns (total 7 columns):\n", |
| 62 | + "total_bill 244 non-null float64\n", |
| 63 | + "tip 244 non-null float64\n", |
| 64 | + "sex 244 non-null category\n", |
| 65 | + "smoker 244 non-null bool\n", |
| 66 | + "day 244 non-null object\n", |
| 67 | + "time 244 non-null object\n", |
| 68 | + "size 244 non-null int64\n", |
| 69 | + "dtypes: bool(1), category(1), float64(2), int64(1), object(2)\n", |
| 70 | + "memory usage: 10.2+ KB\n" |
| 71 | + ] |
| 72 | + } |
| 73 | + ], |
| 74 | + "source": [ |
| 75 | + "# Converting Data Types\n", |
| 76 | + "df['smoker'] = df['smoker'].astype('bool')\n", |
| 77 | + "df['sex'] = df['sex'].astype('category')\n", |
| 78 | + "df.info()" |
| 79 | + ] |
| 80 | + }, |
| 81 | + { |
| 82 | + "cell_type": "markdown", |
| 83 | + "metadata": {}, |
| 84 | + "source": [ |
| 85 | + "### Converting Data Types\n", |
| 86 | + "* Numeric data loaded as a string, usually a sign of bad data that needs to be cleaned" |
| 87 | + ] |
| 88 | + }, |
| 89 | + { |
| 90 | + "cell_type": "code", |
| 91 | + "execution_count": 3, |
| 92 | + "metadata": {}, |
| 93 | + "outputs": [ |
| 94 | + { |
| 95 | + "data": { |
| 96 | + "text/plain": [ |
| 97 | + "total_bill float64\n", |
| 98 | + "tip float64\n", |
| 99 | + "sex category\n", |
| 100 | + "smoker bool\n", |
| 101 | + "day object\n", |
| 102 | + "time object\n", |
| 103 | + "size int64\n", |
| 104 | + "dtype: object" |
| 105 | + ] |
| 106 | + }, |
| 107 | + "execution_count": 3, |
| 108 | + "metadata": {}, |
| 109 | + "output_type": "execute_result" |
| 110 | + } |
| 111 | + ], |
| 112 | + "source": [ |
| 113 | + "# Converting total_bill into a numeric dtype\n", |
| 114 | + "# errors='coerce' will set invalid values as NaN\n", |
| 115 | + "df['total_bill'] = pd.to_numeric(df['total_bill'], errors='coerce')\n", |
| 116 | + "df['tip'] = pd.to_numeric(df['tip'], errors='coerce')\n", |
| 117 | + "df.dtypes" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "markdown", |
| 122 | + "metadata": {}, |
| 123 | + "source": [ |
| 124 | + "## String Manipulation\n", |
| 125 | + "\n", |
| 126 | + "* Much of data cleaning involves string manipulation\n", |
| 127 | + "* Most of the world's data is unstructured text\n", |
| 128 | + "* Python has many built-in and external libraries\n", |
| 129 | + "* 're' library for regular expressions\n", |
| 130 | + "\n", |
| 131 | + "### Regular Expression Match Example\n", |
| 132 | + "\n", |
| 133 | + "***** - Matches it zero or more times\n", |
| 134 | + "\n", |
| 135 | + "**{2}** - Matches exactly 2 values\n", |
| 136 | + "\n", |
| 137 | + "**^** - Caret will tell the pattern to start the pattern match th a the beginning of value\n", |
| 138 | + "\n", |
| 139 | + "**$** - Will tell the pattern to match at the end of the value\n", |
| 140 | + "\n", |
| 141 | + "|Value |Pattern Matched |Regular Expression|\n", |
| 142 | + "|-----------|-------------------|------------------|\n", |
| 143 | + "|17 |12345678901 |\\d* |\n", |
| 144 | + "|\\17ドル |\\12345678901ドル |\\ $\\d* |\n", |
| 145 | + "|\\17ドル.00 |\\12345678901ドル.24 |\\ \\$\\d*\\\\.\\d * |\n", |
| 146 | + "|\\17ドル.89 |\\12345678901ドル.24 |\\ \\$\\d*\\\\.\\d{2} |\n", |
| 147 | + "|\\17ドル.895 |\\12345678901ドル.999 |^\\\\$\\d*\\\\.\\d{2}\\$ |\n", |
| 148 | + "\n", |
| 149 | + "#### Using Regular Expressions\n", |
| 150 | + "\n", |
| 151 | + "* Compile the pattern\n", |
| 152 | + "* Use the compiled pattern to match values\n", |
| 153 | + "* This lets use use the pattern over and over again\n", |
| 154 | + "* Useful since we want to match values down a column of values" |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "code", |
| 159 | + "execution_count": 4, |
| 160 | + "metadata": {}, |
| 161 | + "outputs": [ |
| 162 | + { |
| 163 | + "name": "stdout", |
| 164 | + "output_type": "stream", |
| 165 | + "text": [ |
| 166 | + "True\n", |
| 167 | + "False\n" |
| 168 | + ] |
| 169 | + } |
| 170 | + ], |
| 171 | + "source": [ |
| 172 | + "import re\n", |
| 173 | + "\n", |
| 174 | + "# RegEx Pattern - Match a Phone Number in the format of xxx-xxx-xxxx\n", |
| 175 | + "pattern = re.compile('\\d{3}\\-\\d{3}\\-\\d{4}')\n", |
| 176 | + "\n", |
| 177 | + "# See if the pattern matches\n", |
| 178 | + "result = pattern.match('123-456-7890')\n", |
| 179 | + "result2 = pattern.match('1123-456-7890')\n", |
| 180 | + "\n", |
| 181 | + "print(f'{bool(result)}')\n", |
| 182 | + "print(f'{bool(result2)}')" |
| 183 | + ] |
| 184 | + }, |
| 185 | + { |
| 186 | + "cell_type": "code", |
| 187 | + "execution_count": 5, |
| 188 | + "metadata": {}, |
| 189 | + "outputs": [ |
| 190 | + { |
| 191 | + "ename": "TypeError", |
| 192 | + "evalue": "findall() missing 1 required positional argument: 'string'", |
| 193 | + "output_type": "error", |
| 194 | + "traceback": [ |
| 195 | + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", |
| 196 | + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", |
| 197 | + "\u001b[1;32m<ipython-input-5-d636d1f14eb0>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m# Find the numeric values in a string\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mmatches\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mre\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfindall\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'\\d*'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", |
| 198 | + "\u001b[1;31mTypeError\u001b[0m: findall() missing 1 required positional argument: 'string'" |
| 199 | + ] |
| 200 | + } |
| 201 | + ], |
| 202 | + "source": [ |
| 203 | + "# Find the numeric values in a string\n", |
| 204 | + "matches = re.findall('\\d*')" |
| 205 | + ] |
| 206 | + } |
| 207 | + ], |
| 208 | + "metadata": { |
| 209 | + "kernelspec": { |
| 210 | + "display_name": "Python 3", |
| 211 | + "language": "python", |
| 212 | + "name": "python3" |
| 213 | + }, |
| 214 | + "language_info": { |
| 215 | + "codemirror_mode": { |
| 216 | + "name": "ipython", |
| 217 | + "version": 3 |
| 218 | + }, |
| 219 | + "file_extension": ".py", |
| 220 | + "mimetype": "text/x-python", |
| 221 | + "name": "python", |
| 222 | + "nbconvert_exporter": "python", |
| 223 | + "pygments_lexer": "ipython3", |
| 224 | + "version": "3.7.3" |
| 225 | + }, |
| 226 | + "toc": { |
| 227 | + "base_numbering": 1, |
| 228 | + "nav_menu": {}, |
| 229 | + "number_sections": true, |
| 230 | + "sideBar": true, |
| 231 | + "skip_h1_title": false, |
| 232 | + "title_cell": "Table of Contents", |
| 233 | + "title_sidebar": "Contents", |
| 234 | + "toc_cell": false, |
| 235 | + "toc_position": {}, |
| 236 | + "toc_section_display": true, |
| 237 | + "toc_window_display": false |
| 238 | + } |
| 239 | + }, |
| 240 | + "nbformat": 4, |
| 241 | + "nbformat_minor": 2 |
| 242 | +} |
0 commit comments