Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit b0a79f3

Browse files
authored
v0
v0
1 parent f5e3cd9 commit b0a79f3

File tree

1 file changed

+121
-0
lines changed

1 file changed

+121
-0
lines changed

‎From 2D to 3D with Time Series

Lines changed: 121 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,121 @@
1+
### Source
2+
https://plotly.com/python/plotly-express/
3+
### Libraries
4+
import plotly.express as px
5+
import plotly.io as pio #pio.templates
6+
import plotly.graph_objects as go
7+
8+
import pandas as pd
9+
import numpy as np
10+
### Scatter plots
11+
df = px.data.iris()
12+
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species")
13+
fig.show()
14+
### Trendline
15+
#Disable default theming
16+
#pio.templates.default = "none"
17+
pio.templates.default = "plotly_dark"
18+
19+
df = px.data.iris()
20+
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species", marginal_y="violin",
21+
marginal_x="box", trendline="ols", template="simple_white")
22+
fig.show()
23+
### Error bars
24+
df = px.data.iris()
25+
df["e"] = df["sepal_width"]/100
26+
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species", error_x="e", error_y="e")
27+
fig.show()
28+
### Bar charts
29+
df = px.data.tips()
30+
fig = px.bar(df, x="sex", y="total_bill", color="smoker", barmode="group")
31+
fig.show()
32+
### Facet plots
33+
df = px.data.tips()
34+
fig = px.bar(df, x="sex", y="total_bill", color="smoker", barmode="group", facet_row="time", facet_col="day",
35+
category_orders={"day": ["Thur", "Fri", "Sat", "Sun"], "time": ["Lunch", "Dinner"]})
36+
fig.show()
37+
### Scatterplot matrices
38+
df = px.data.iris()
39+
fig = px.scatter_matrix(df, dimensions=["sepal_width", "sepal_length", "petal_width", "petal_length"], color="species")
40+
fig.show()
41+
### Parallel Coordinates
42+
df = px.data.iris()
43+
fig = px.parallel_coordinates(df, color="species_id", labels={"species_id": "Species",
44+
"sepal_width": "Sepal Width", "sepal_length": "Sepal Length",
45+
"petal_width": "Petal Width", "petal_length": "Petal Length", },
46+
color_continuous_scale=px.colors.diverging.Tealrose, color_continuous_midpoint=2)
47+
fig.show()
48+
### Parallel Categories
49+
df = px.data.tips()
50+
fig = px.parallel_categories(df, dimensions=['sex', 'smoker', 'day'],
51+
color="size", color_continuous_scale=px.colors.sequential.Inferno,
52+
labels={'sex':'Payer sex', 'smoker':'Smokers at the table', 'day':'Day of week'})
53+
fig.show()
54+
### Continuous Color
55+
df = px.data.tips()
56+
fig = px.scatter(df, x="total_bill", y="tip", color="size",
57+
title="Numeric 'size' values mean continous color")
58+
59+
fig.show()
60+
### Animations
61+
df = px.data.gapminder()
62+
fig = px.scatter(df, x="gdpPercap", y="lifeExp", animation_frame="year", animation_group="country",
63+
size="pop", color="continent", hover_name="country", facet_col="continent",
64+
log_x=True, size_max=45, range_x=[100,100000], range_y=[25,90])
65+
fig.show()
66+
### line charts
67+
df = px.data.gapminder()
68+
fig = px.line(df, x="year", y="lifeExp", color="continent", line_group="country", hover_name="country",
69+
line_shape="spline", render_mode="svg")
70+
fig.show()
71+
### Area charts
72+
df = px.data.gapminder()
73+
fig = px.area(df, x="year", y="pop", color="continent", line_group="country")
74+
fig.show()
75+
### Pie charts
76+
df = px.data.gapminder().query("year == 2007").query("continent == 'Europe'")
77+
df.loc[df['pop'] < 2.e6, 'country'] = 'Other countries' # Represent only large countries
78+
fig = px.pie(df, values='pop', names='country', title='Population of European continent')
79+
fig.show()
80+
### Sunburst charts
81+
df = px.data.gapminder().query("year == 2007")
82+
fig = px.sunburst(df, path=['continent', 'country'], values='pop',
83+
color='lifeExp', hover_data=['iso_alpha'])
84+
fig.show()
85+
### Treemaps
86+
df = px.data.gapminder().query("year == 2007")
87+
fig = px.treemap(df, path=[px.Constant('world'), 'continent', 'country'], values='pop',
88+
color='lifeExp', hover_data=['iso_alpha'])
89+
fig.show()
90+
### Histograms
91+
df = px.data.tips()
92+
fig = px.histogram(df, x="total_bill", y="tip", color="sex", marginal="rug", hover_data=df.columns)
93+
fig.show()
94+
### Box plots
95+
df = px.data.tips()
96+
fig = px.box(df, x="day", y="total_bill", color="smoker", notched=True)
97+
fig.show()
98+
99+
# Explanation https://www.statisticshowto.com/probability-and-statistics/descriptive-statistics/box-plot/
100+
### Density contours
101+
df = px.data.iris()
102+
fig = px.density_contour(df, x="sepal_width", y="sepal_length", color="species", marginal_x="rug", marginal_y="histogram")
103+
fig.show()
104+
### Density Heatmaps
105+
df = px.data.iris()
106+
fig = px.density_heatmap(df, x="sepal_width", y="sepal_length", marginal_x="rug", marginal_y="histogram")
107+
fig.show()
108+
### Choropleth maps
109+
df = px.data.gapminder()
110+
fig = px.choropleth(df, locations="iso_alpha", color="lifeExp", hover_name="country", animation_frame="year", range_color=[20,80])
111+
fig.show()
112+
### 3D scatter plots
113+
df = px.data.election()
114+
fig = px.scatter_3d(df, x="Joly", y="Coderre", z="Bergeron", color="winner", size="total", hover_name="district",
115+
symbol="result", color_discrete_map = {"Joly": "blue", "Bergeron": "green", "Coderre":"red"})
116+
fig.show()
117+
### Ternary charts
118+
df = px.data.election()
119+
fig = px.scatter_ternary(df, a="Joly", b="Coderre", c="Bergeron", color="winner", size="total", hover_name="district",
120+
size_max=15, color_discrete_map = {"Joly": "blue", "Bergeron": "green", "Coderre":"red"} )
121+
fig.show()

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /