Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit fbc324b

Browse files
author
xyliao
committed
fix param_bug
1 parent eed1aa3 commit fbc324b

File tree

1 file changed

+60
-78
lines changed

1 file changed

+60
-78
lines changed

‎chapter3_NN/param_initialize.ipynb

Lines changed: 60 additions & 78 deletions
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@
2525
},
2626
{
2727
"cell_type": "code",
28-
"execution_count": 6,
28+
"execution_count": 1,
2929
"metadata": {
3030
"collapsed": true
3131
},
@@ -38,7 +38,7 @@
3838
},
3939
{
4040
"cell_type": "code",
41-
"execution_count": 13,
41+
"execution_count": 2,
4242
"metadata": {
4343
"collapsed": true
4444
},
@@ -56,7 +56,7 @@
5656
},
5757
{
5858
"cell_type": "code",
59-
"execution_count": 14,
59+
"execution_count": 3,
6060
"metadata": {
6161
"collapsed": true
6262
},
@@ -69,23 +69,21 @@
6969
},
7070
{
7171
"cell_type": "code",
72-
"execution_count": 15,
73-
"metadata": {
74-
"collapsed": false
75-
},
72+
"execution_count": 4,
73+
"metadata": {},
7674
"outputs": [
7775
{
7876
"name": "stdout",
7977
"output_type": "stream",
8078
"text": [
8179
"Parameter containing:\n",
82-
"-0.0221 -0.0171 0.1221 ... -0.0452 -0.1715 -0.0637\n",
83-
"-0.0922 -0.1111 0.0822 ... 0.0316 0.1020 -0.0585\n",
84-
"-0.0830 0.1037 -0.0572 ... -0.1465 -0.1049 -0.0566\n",
80+
" 0.1236 -0.1731 -0.0479 ... 0.0031 0.0784 0.1239\n",
81+
" 0.0713 0.1615 0.0500 ... -0.1757 -0.1274 -0.1625\n",
82+
" 0.0638 -0.1543 -0.0362 ... 0.0316 -0.1774 -0.1242\n",
8583
" ... ⋱ ... \n",
86-
" 0.1485 0.1137 0.1745 ... 0.0073 0.0887 0.1143\n",
87-
" 0.1634 -0.1478 0.0930 ... 0.1418 -0.0501 0.1266\n",
88-
" 0.0943 -0.1595 -0.1742 ... -0.1531 0.0786 -0.1594\n",
84+
" 0.1551 0.1772 0.1537 ... 0.0730 0.0950 0.0627\n",
85+
" 0.0495 0.0896 0.0243 ... -0.1302 -0.0256 -0.0326\n",
86+
"-0.1193 -0.0989 -0.1795 ... 0.0939 0.0774 -0.0751\n",
8987
"[torch.FloatTensor of size 40x30]\n",
9088
"\n"
9189
]
@@ -104,7 +102,7 @@
104102
},
105103
{
106104
"cell_type": "code",
107-
"execution_count": 16,
105+
"execution_count": 5,
108106
"metadata": {
109107
"collapsed": true
110108
},
@@ -116,23 +114,21 @@
116114
},
117115
{
118116
"cell_type": "code",
119-
"execution_count": 17,
120-
"metadata": {
121-
"collapsed": false
122-
},
117+
"execution_count": 6,
118+
"metadata": {},
123119
"outputs": [
124120
{
125121
"name": "stdout",
126122
"output_type": "stream",
127123
"text": [
128124
"Parameter containing:\n",
129-
" 4.6904 3.5478 4.0254 ... 3.6078 4.6897 4.8285\n",
130-
" 4.6349 3.4475 4.8485 ... 3.8712 3.9396 4.7797\n",
131-
" 3.0177 3.4870 4.5741 ... 4.6718 4.2548 4.6343\n",
125+
" 4.5768 3.6175 3.3098 ... 4.7374 4.0164 3.3037\n",
126+
" 4.1809 3.5624 3.1452 ... 3.0305 4.4444 4.1058\n",
127+
" 3.5277 4.3712 3.7859 ... 3.5760 4.8559 4.3252\n",
132128
" ... ⋱ ... \n",
133-
" 3.3116 3.2907 4.5550 ... 3.5882 4.4668 3.6532\n",
134-
" 4.2998 4.6337 3.8836 ... 3.1220 4.0567 4.3605\n",
135-
" 4.3862 4.5433 4.1909 ... 4.2792 4.7513 3.7076\n",
129+
" 4.8983 3.9855 3.2842 ... 4.7683 4.7590 3.3498\n",
130+
" 4.9168 4.5723 3.5870 ... 3.2032 3.9842 3.2484\n",
131+
" 4.2532 4.6352 4.4857 ... 3.7543 3.9885 4.4211\n",
136132
"[torch.DoubleTensor of size 40x30]\n",
137133
"\n"
138134
]
@@ -151,10 +147,8 @@
151147
},
152148
{
153149
"cell_type": "code",
154-
"execution_count": 18,
155-
"metadata": {
156-
"collapsed": false
157-
},
150+
"execution_count": 7,
151+
"metadata": {},
158152
"outputs": [],
159153
"source": [
160154
"for layer in net1:\n",
@@ -188,7 +182,7 @@
188182
},
189183
{
190184
"cell_type": "code",
191-
"execution_count": 28,
185+
"execution_count": 8,
192186
"metadata": {
193187
"collapsed": true
194188
},
@@ -202,7 +196,7 @@
202196
" nn.ReLU()\n",
203197
" )\n",
204198
" \n",
205-
" self.l1[0].weight.data = torch.randn(30, 40) # 直接对某一层初始化\n",
199+
" self.l1[0].weight.data = torch.randn(40, 30) # 直接对某一层初始化\n",
206200
" \n",
207201
" self.l2 = nn.Sequential(\n",
208202
" nn.Linear(40, 50),\n",
@@ -223,7 +217,7 @@
223217
},
224218
{
225219
"cell_type": "code",
226-
"execution_count": 29,
220+
"execution_count": 9,
227221
"metadata": {
228222
"collapsed": true
229223
},
@@ -234,10 +228,8 @@
234228
},
235229
{
236230
"cell_type": "code",
237-
"execution_count": 30,
238-
"metadata": {
239-
"collapsed": false
240-
},
231+
"execution_count": 10,
232+
"metadata": {},
241233
"outputs": [
242234
{
243235
"name": "stdout",
@@ -266,10 +258,8 @@
266258
},
267259
{
268260
"cell_type": "code",
269-
"execution_count": 31,
270-
"metadata": {
271-
"collapsed": false
272-
},
261+
"execution_count": 11,
262+
"metadata": {},
273263
"outputs": [
274264
{
275265
"name": "stdout",
@@ -327,10 +317,8 @@
327317
},
328318
{
329319
"cell_type": "code",
330-
"execution_count": 33,
331-
"metadata": {
332-
"collapsed": false
333-
},
320+
"execution_count": 12,
321+
"metadata": {},
334322
"outputs": [],
335323
"source": [
336324
"for layer in net2.modules():\n",
@@ -356,7 +344,7 @@
356344
},
357345
{
358346
"cell_type": "code",
359-
"execution_count": 34,
347+
"execution_count": 13,
360348
"metadata": {
361349
"collapsed": true
362350
},
@@ -367,23 +355,21 @@
367355
},
368356
{
369357
"cell_type": "code",
370-
"execution_count": 38,
371-
"metadata": {
372-
"collapsed": false
373-
},
358+
"execution_count": 14,
359+
"metadata": {},
374360
"outputs": [
375361
{
376362
"name": "stdout",
377363
"output_type": "stream",
378364
"text": [
379365
"Parameter containing:\n",
380-
" 0.2051 -0.4551 0.7049 ... 0.5223 -0.7658 -0.1899\n",
381-
" 0.2562 0.2797 0.0012 ... -0.5278 -0.4887 -0.8263\n",
382-
" 0.4582 -0.1433 0.5009 ... 0.1000 -0.5663 0.1605\n",
366+
" 0.8453 0.2891 -0.5276 ... -0.1530 -0.4474 -0.5470\n",
367+
"-0.1983 -0.4530 -0.1950 ... 0.4107 -0.4889 0.3654\n",
368+
" 0.9149 -0.5641 -0.6594 ... 0.0734 0.1354 -0.4152\n",
383369
" ... ⋱ ... \n",
384-
" 0.8715 0.4053 0.3679 ... -0.4733 -0.6270 -0.3325\n",
385-
"-0.1898 0.6608 0.1111 ... 0.2294 0.2603 -0.0200\n",
386-
"-0.3035 0.1876 -0.5422 ... 0.0505 0.6244 -0.2368\n",
370+
"-0.4718 -0.5125 -0.5572 ... 0.0824 -0.6551 0.0840\n",
371+
"-0.2374 -0.0036 0.6497 ... 0.7856 -0.1367 -0.8795\n",
372+
" 0.0774 0.2609 -0.2358 ... -0.8196 0.1696 0.5976\n",
387373
"[torch.DoubleTensor of size 40x30]\n",
388374
"\n"
389375
]
@@ -395,26 +381,24 @@
395381
},
396382
{
397383
"cell_type": "code",
398-
"execution_count": 39,
399-
"metadata": {
400-
"collapsed": false
401-
},
384+
"execution_count": 15,
385+
"metadata": {},
402386
"outputs": [
403387
{
404388
"data": {
405389
"text/plain": [
406390
"Parameter containing:\n",
407-
"-0.0449 -0.2140 0.2820 ... -0.2266 0.0365 -0.1897\n",
408-
"-0.0313 0.1128 0.1789 ... -0.1731 0.0590 -0.1085\n",
409-
"-0.0347 -0.1429 -0.1646 ... 0.0212 0.1731 -0.0251\n",
391+
"-0.2114 0.2704 -0.2186 ... 0.1727 0.2158 0.0775\n",
392+
"-0.0736 -0.0565 0.0844 ... 0.1793 0.2520 -0.0047\n",
393+
" 0.1331 -0.1843 0.2426 ... -0.2199 -0.0689 0.1756\n",
410394
" ... ⋱ ... \n",
411-
" 0.0902 -0.1555 0.0562 ... -0.0109 -0.2192 -0.1540\n",
412-
"-0.1491 -0.2610 -0.2453 ... 0.2201 0.2257 0.1047\n",
413-
" 0.0297 0.1414 -0.0139 ... -0.1209 -0.0193 -0.1731\n",
395+
" 0.2751 -0.1404 0.1225 ... 0.1926 0.0175 -0.2099\n",
396+
" 0.0970 -0.0733 -0.2461 ... 0.0605 0.1915 -0.1220\n",
397+
" 0.0199 0.1283 -0.1384 ... -0.0344 -0.0560 0.2285\n",
414398
"[torch.DoubleTensor of size 40x30]"
415399
]
416400
},
417-
"execution_count": 39,
401+
"execution_count": 15,
418402
"metadata": {},
419403
"output_type": "execute_result"
420404
}
@@ -425,23 +409,21 @@
425409
},
426410
{
427411
"cell_type": "code",
428-
"execution_count": 40,
429-
"metadata": {
430-
"collapsed": false
431-
},
412+
"execution_count": 16,
413+
"metadata": {},
432414
"outputs": [
433415
{
434416
"name": "stdout",
435417
"output_type": "stream",
436418
"text": [
437419
"Parameter containing:\n",
438-
"-0.0449 -0.2140 0.2820 ... -0.2266 0.0365 -0.1897\n",
439-
"-0.0313 0.1128 0.1789 ... -0.1731 0.0590 -0.1085\n",
440-
"-0.0347 -0.1429 -0.1646 ... 0.0212 0.1731 -0.0251\n",
420+
"-0.2114 0.2704 -0.2186 ... 0.1727 0.2158 0.0775\n",
421+
"-0.0736 -0.0565 0.0844 ... 0.1793 0.2520 -0.0047\n",
422+
" 0.1331 -0.1843 0.2426 ... -0.2199 -0.0689 0.1756\n",
441423
" ... ⋱ ... \n",
442-
" 0.0902 -0.1555 0.0562 ... -0.0109 -0.2192 -0.1540\n",
443-
"-0.1491 -0.2610 -0.2453 ... 0.2201 0.2257 0.1047\n",
444-
" 0.0297 0.1414 -0.0139 ... -0.1209 -0.0193 -0.1731\n",
424+
" 0.2751 -0.1404 0.1225 ... 0.1926 0.0175 -0.2099\n",
425+
" 0.0970 -0.0733 -0.2461 ... 0.0605 0.1915 -0.1220\n",
426+
" 0.0199 0.1283 -0.1384 ... -0.0344 -0.0560 0.2285\n",
445427
"[torch.DoubleTensor of size 40x30]\n",
446428
"\n"
447429
]
@@ -472,9 +454,9 @@
472454
],
473455
"metadata": {
474456
"kernelspec": {
475-
"display_name": "mx",
457+
"display_name": "Python 3",
476458
"language": "python",
477-
"name": "mx"
459+
"name": "python3"
478460
},
479461
"language_info": {
480462
"codemirror_mode": {
@@ -486,7 +468,7 @@
486468
"name": "python",
487469
"nbconvert_exporter": "python",
488470
"pygments_lexer": "ipython3",
489-
"version": "3.6.0"
471+
"version": "3.6.3"
490472
}
491473
},
492474
"nbformat": 4,

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /