@@ -28,23 +28,14 @@ Learn Deep Learning with PyTorch
28
28
- [ 多层神经网络,Sequential 和 Module] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/nn-sequential-module.ipynb )
29
29
- [ 深度神经网络] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/deep-nn.ipynb )
30
30
- [ 参数初始化方法] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/param_initialize.ipynb )
31
- - 优化算法
32
- - [ SGD] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/sgd.ipynb )
33
- - [ 动量法] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/momentum.ipynb )
34
- - [ Adagrad] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adagrad.ipynb )
35
- - [ RMSProp] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/rmsprop.ipynb )
36
- - [ Adadelta] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adadelta.ipynb )
37
- - [ Adam] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adam.ipynb )
38
-
31
+
39
32
- Chapter 4: 卷积神经网络
40
- - PyTorch 中的卷积模块
41
- - 使用重复元素的深度网络,VGG
42
- - 更加丰富化结构的网络,GoogLeNet
43
- - 深度残差网络,ResNet
44
- - 稠密连接的卷积网络,DenseNet
45
- - 更好的训练卷积网络:数据增强、批标准化、dropout和正则化方法
46
- - 灵活的数据读取介绍
47
- - Fine-tuning: 通过微调进行迁移学习
33
+ - [ PyTorch 中的卷积模块] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN/basic_conv.ipynb )
34
+ - [ 使用重复元素的深度网络,VGG] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/vgg.ipynb )
35
+ - [ 更加丰富化结构的网络,GoogLeNet] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/googlenet.ipynb )
36
+ - [ 深度残差网络,ResNet] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/resnet.ipynb )
37
+ - [ 稠密连接的卷积网络,DenseNet] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/densenet.ipynb )
38
+ - 更好的训练卷积网络:数据增强、批标准化、dropout、正则化方法以及学习率衰减
48
39
49
40
- Chapter 5: 循环神经网络
50
41
- LSTM 和 GRU
@@ -62,6 +53,13 @@ Learn Deep Learning with PyTorch
62
53
- Chapter 7: PyTorch高级
63
54
- tensorboard 可视化
64
55
- 优化算法
56
+ - [ SGD] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/sgd.ipynb )
57
+ - [ 动量法] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/momentum.ipynb )
58
+ - [ Adagrad] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adagrad.ipynb )
59
+ - [ RMSProp] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/rmsprop.ipynb )
60
+ - [ Adadelta] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adadelta.ipynb )
61
+ - [ Adam] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adam.ipynb )
62
+ - 灵活的数据读取介绍
65
63
- autograd.function 的介绍
66
64
- 数据并行和多 GPU
67
65
- PyTorch 的分布式应用
@@ -70,14 +68,14 @@ Learn Deep Learning with PyTorch
70
68
71
69
### part2: 深度学习的应用
72
70
- Chapter 8: 计算机视觉
73
- - 图像增强的方法
74
71
- Fine-tuning: 通过微调进行迁移学习
75
72
- 语义分割: 通过 FCN 实现像素级别的分类
76
73
- Neural Transfer: 通过卷积网络实现风格迁移
77
74
- Deep Dream: 探索卷积网络眼中的世界
78
75
79
76
- Chapter 9: 自然语言处理
80
77
- char rnn 实现文本生成
78
+ - Image Caption: 实现图片字幕生成
81
79
- seq2seq 实现机器翻译
82
80
- cnn+rnn+attention 实现文本识别
83
81
0 commit comments