Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit cad93b5

Browse files
finish cnn architecture
1 parent c0eb032 commit cad93b5

File tree

17 files changed

+1960
-640
lines changed

17 files changed

+1960
-640
lines changed

‎README.md‎

Lines changed: 15 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -28,23 +28,14 @@ Learn Deep Learning with PyTorch
2828
- [多层神经网络,Sequential 和 Module](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/nn-sequential-module.ipynb)
2929
- [深度神经网络](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/deep-nn.ipynb)
3030
- [参数初始化方法](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/param_initialize.ipynb)
31-
- 优化算法
32-
- [SGD](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/sgd.ipynb)
33-
- [动量法](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/momentum.ipynb)
34-
- [Adagrad](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adagrad.ipynb)
35-
- [RMSProp](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/rmsprop.ipynb)
36-
- [Adadelta](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adadelta.ipynb)
37-
- [Adam](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adam.ipynb)
38-
31+
3932
- Chapter 4: 卷积神经网络
40-
- PyTorch 中的卷积模块
41-
- 使用重复元素的深度网络,VGG
42-
- 更加丰富化结构的网络,GoogLeNet
43-
- 深度残差网络,ResNet
44-
- 稠密连接的卷积网络,DenseNet
45-
- 更好的训练卷积网络:数据增强、批标准化、dropout和正则化方法
46-
- 灵活的数据读取介绍
47-
- Fine-tuning: 通过微调进行迁移学习
33+
- [PyTorch 中的卷积模块](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN/basic_conv.ipynb)
34+
- [使用重复元素的深度网络,VGG](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/vgg.ipynb)
35+
- [更加丰富化结构的网络,GoogLeNet](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/googlenet.ipynb)
36+
- [深度残差网络,ResNet](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/resnet.ipynb)
37+
- [稠密连接的卷积网络,DenseNet](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/densenet.ipynb)
38+
- 更好的训练卷积网络:数据增强、批标准化、dropout、正则化方法以及学习率衰减
4839

4940
- Chapter 5: 循环神经网络
5041
- LSTM 和 GRU
@@ -62,6 +53,13 @@ Learn Deep Learning with PyTorch
6253
- Chapter 7: PyTorch高级
6354
- tensorboard 可视化
6455
- 优化算法
56+
- [SGD](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/sgd.ipynb)
57+
- [动量法](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/momentum.ipynb)
58+
- [Adagrad](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adagrad.ipynb)
59+
- [RMSProp](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/rmsprop.ipynb)
60+
- [Adadelta](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adadelta.ipynb)
61+
- [Adam](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adam.ipynb)
62+
- 灵活的数据读取介绍
6563
- autograd.function 的介绍
6664
- 数据并行和多 GPU
6765
- PyTorch 的分布式应用
@@ -70,14 +68,14 @@ Learn Deep Learning with PyTorch
7068

7169
### part2: 深度学习的应用
7270
- Chapter 8: 计算机视觉
73-
- 图像增强的方法
7471
- Fine-tuning: 通过微调进行迁移学习
7572
- 语义分割: 通过 FCN 实现像素级别的分类
7673
- Neural Transfer: 通过卷积网络实现风格迁移
7774
- Deep Dream: 探索卷积网络眼中的世界
7875

7976
- Chapter 9: 自然语言处理
8077
- char rnn 实现文本生成
78+
- Image Caption: 实现图片字幕生成
8179
- seq2seq 实现机器翻译
8280
- cnn+rnn+attention 实现文本识别
8381

‎chapter3_NN/deep-nn.ipynb‎

Lines changed: 63 additions & 63 deletions
Large diffs are not rendered by default.

‎chapter4_CNN/basic_conv.ipynb‎

Lines changed: 334 additions & 0 deletions
Large diffs are not rendered by default.

‎chapter4_CNN/cat.png‎

94.7 KB
Loading[フレーム]

‎chapter4_CNN/cifar10/main.py‎

Lines changed: 0 additions & 174 deletions
This file was deleted.

‎chapter4_CNN/convolution_network/alexnet.py‎

Lines changed: 0 additions & 34 deletions
This file was deleted.

‎chapter4_CNN/convolution_network/googlenet.py‎

Lines changed: 0 additions & 45 deletions
This file was deleted.

‎chapter4_CNN/convolution_network/lenet.py‎

Lines changed: 0 additions & 29 deletions
This file was deleted.

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /