Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit a82fa09

Browse files
finish data io
1 parent ef86482 commit a82fa09

File tree

12 files changed

+2704
-9
lines changed

12 files changed

+2704
-9
lines changed

‎README.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -32,14 +32,14 @@ Learn Deep Learning with PyTorch
3232
- Chapter 4: 卷积神经网络
3333
- [PyTorch 中的卷积模块](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN/basic_conv.ipynb)
3434
- [批标准化,batch normalization](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN/batch-normalization.ipynb)
35-
- [使用重复元素的深度网络,VGG](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/vgg.ipynb)
36-
- [更加丰富化结构的网络,GoogLeNet](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/googlenet.ipynb)
37-
- [深度残差网络,ResNet](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/resnet.ipynb)
38-
- [稠密连接的卷积网络,DenseNet](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/densenet.ipynb)
35+
- [使用重复元素的深度网络,VGG](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN/vgg.ipynb)
36+
- [更加丰富化结构的网络,GoogLeNet](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN/googlenet.ipynb)
37+
- [深度残差网络,ResNet](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN/resnet.ipynb)
38+
- [稠密连接的卷积网络,DenseNet](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN/densenet.ipynb)
3939
- 更好的训练卷积网络
40-
- [数据增强](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/data-augumentation.ipynb)
41-
- [正则化](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/regularization.ipynb)
42-
- [学习率衰减](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/lr-decay.ipynb)
40+
- [数据增强](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN/data-augumentation.ipynb)
41+
- [正则化](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN/regularization.ipynb)
42+
- [学习率衰减](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN/lr-decay.ipynb)
4343

4444
- Chapter 5: 循环神经网络
4545
- LSTM 和 GRU
@@ -63,7 +63,7 @@ Learn Deep Learning with PyTorch
6363
- [RMSProp](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_PyTorch-Advances/optimizer/rmsprop.ipynb)
6464
- [Adadelta](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_PyTorch-Advances/optimizer/adadelta.ipynb)
6565
- [Adam](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_PyTorch-Advances/optimizer/adam.ipynb)
66-
- [灵活的数据读取介绍]()
66+
- [灵活的数据读取介绍](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_PyTorch-Advances/data-io.ipynb)
6767
- autograd.function 的介绍
6868
- 数据并行和多 GPU
6969
- PyTorch 的分布式应用
@@ -72,7 +72,7 @@ Learn Deep Learning with PyTorch
7272

7373
### part2: 深度学习的应用
7474
- Chapter 8: 计算机视觉
75-
- [Fine-tuning: 通过微调进行迁移学习]()
75+
- [Fine-tuning: 通过微调进行迁移学习](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter7_Computer-Vision/fine-tune.ipynb)
7676
- 语义分割: 通过 FCN 实现像素级别的分类
7777
- Neural Transfer: 通过卷积网络实现风格迁移
7878
- Deep Dream: 探索卷积网络眼中的世界

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /