|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# TensorBoard 可视化\n", |
| 8 | + "[github](https://github.com/lanpa/tensorboard-pytorch)" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "code", |
| 13 | + "execution_count": 1, |
| 14 | + "metadata": { |
| 15 | + "ExecuteTime": { |
| 16 | + "end_time": "2017年12月24日T09:39:39.910789Z", |
| 17 | + "start_time": "2017年12月24日T09:39:39.398570Z" |
| 18 | + }, |
| 19 | + "collapsed": true |
| 20 | + }, |
| 21 | + "outputs": [], |
| 22 | + "source": [ |
| 23 | + "import numpy as np\n", |
| 24 | + "import torch\n", |
| 25 | + "from torch import nn\n", |
| 26 | + "import torch.nn.functional as F\n", |
| 27 | + "from torch.autograd import Variable\n", |
| 28 | + "from torchvision.datasets import CIFAR10\n", |
| 29 | + "from utils import resnet\n", |
| 30 | + "from torchvision import transforms as tfs\n", |
| 31 | + "from datetime import datetime\n", |
| 32 | + "from tensorboardX import SummaryWriter" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "code", |
| 37 | + "execution_count": 2, |
| 38 | + "metadata": { |
| 39 | + "ExecuteTime": { |
| 40 | + "end_time": "2017年12月24日T09:39:41.981293Z", |
| 41 | + "start_time": "2017年12月24日T09:39:40.621895Z" |
| 42 | + }, |
| 43 | + "collapsed": true |
| 44 | + }, |
| 45 | + "outputs": [], |
| 46 | + "source": [ |
| 47 | + "# 使用数据增强\n", |
| 48 | + "def train_tf(x):\n", |
| 49 | + " im_aug = tfs.Compose([\n", |
| 50 | + " tfs.Resize(120),\n", |
| 51 | + " tfs.RandomHorizontalFlip(),\n", |
| 52 | + " tfs.RandomCrop(96),\n", |
| 53 | + " tfs.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),\n", |
| 54 | + " tfs.ToTensor(),\n", |
| 55 | + " tfs.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])\n", |
| 56 | + " ])\n", |
| 57 | + " x = im_aug(x)\n", |
| 58 | + " return x\n", |
| 59 | + "\n", |
| 60 | + "def test_tf(x):\n", |
| 61 | + " im_aug = tfs.Compose([\n", |
| 62 | + " tfs.Resize(96),\n", |
| 63 | + " tfs.ToTensor(),\n", |
| 64 | + " tfs.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])\n", |
| 65 | + " ])\n", |
| 66 | + " x = im_aug(x)\n", |
| 67 | + " return x\n", |
| 68 | + "\n", |
| 69 | + "train_set = CIFAR10('./data', train=True, transform=train_tf)\n", |
| 70 | + "train_data = torch.utils.data.DataLoader(train_set, batch_size=256, shuffle=True, num_workers=4)\n", |
| 71 | + "valid_set = CIFAR10('./data', train=False, transform=test_tf)\n", |
| 72 | + "valid_data = torch.utils.data.DataLoader(valid_set, batch_size=256, shuffle=False, num_workers=4)\n", |
| 73 | + "\n", |
| 74 | + "net = resnet(3, 10)\n", |
| 75 | + "optimizer = torch.optim.SGD(net.parameters(), lr=0.1, weight_decay=1e-4)\n", |
| 76 | + "criterion = nn.CrossEntropyLoss()" |
| 77 | + ] |
| 78 | + }, |
| 79 | + { |
| 80 | + "cell_type": "code", |
| 81 | + "execution_count": 3, |
| 82 | + "metadata": { |
| 83 | + "ExecuteTime": { |
| 84 | + "end_time": "2017年12月24日T09:53:40.434024Z", |
| 85 | + "start_time": "2017年12月24日T09:39:41.984480Z" |
| 86 | + }, |
| 87 | + "collapsed": false |
| 88 | + }, |
| 89 | + "outputs": [ |
| 90 | + { |
| 91 | + "name": "stdout", |
| 92 | + "output_type": "stream", |
| 93 | + "text": [ |
| 94 | + "Epoch 0. Train Loss: 1.877906, Train Acc: 0.315410, Valid Loss: 2.198587, Valid Acc: 0.293164, Time 00:00:26\n", |
| 95 | + "Epoch 1. Train Loss: 1.398501, Train Acc: 0.498657, Valid Loss: 1.877540, Valid Acc: 0.400098, Time 00:00:27\n", |
| 96 | + "Epoch 2. Train Loss: 1.141419, Train Acc: 0.597628, Valid Loss: 1.872355, Valid Acc: 0.446777, Time 00:00:27\n", |
| 97 | + "Epoch 3. Train Loss: 0.980048, Train Acc: 0.658367, Valid Loss: 1.672951, Valid Acc: 0.475391, Time 00:00:27\n", |
| 98 | + "Epoch 4. Train Loss: 0.871448, Train Acc: 0.695073, Valid Loss: 1.263234, Valid Acc: 0.578613, Time 00:00:28\n", |
| 99 | + "Epoch 5. Train Loss: 0.794649, Train Acc: 0.723992, Valid Loss: 2.142715, Valid Acc: 0.466699, Time 00:00:27\n", |
| 100 | + "Epoch 6. Train Loss: 0.736611, Train Acc: 0.741554, Valid Loss: 1.701331, Valid Acc: 0.500391, Time 00:00:27\n", |
| 101 | + "Epoch 7. Train Loss: 0.695095, Train Acc: 0.756816, Valid Loss: 1.385478, Valid Acc: 0.597656, Time 00:00:28\n", |
| 102 | + "Epoch 8. Train Loss: 0.652659, Train Acc: 0.773796, Valid Loss: 1.029726, Valid Acc: 0.676465, Time 00:00:27\n", |
| 103 | + "Epoch 9. Train Loss: 0.623829, Train Acc: 0.784144, Valid Loss: 0.933388, Valid Acc: 0.682520, Time 00:00:27\n", |
| 104 | + "Epoch 10. Train Loss: 0.581615, Train Acc: 0.798792, Valid Loss: 1.291557, Valid Acc: 0.635938, Time 00:00:27\n", |
| 105 | + "Epoch 11. Train Loss: 0.559358, Train Acc: 0.805708, Valid Loss: 1.430408, Valid Acc: 0.586426, Time 00:00:28\n", |
| 106 | + "Epoch 12. Train Loss: 0.534197, Train Acc: 0.816853, Valid Loss: 0.960802, Valid Acc: 0.704785, Time 00:00:27\n", |
| 107 | + "Epoch 13. Train Loss: 0.512111, Train Acc: 0.822389, Valid Loss: 0.923353, Valid Acc: 0.716602, Time 00:00:27\n", |
| 108 | + "Epoch 14. Train Loss: 0.494577, Train Acc: 0.828225, Valid Loss: 1.023517, Valid Acc: 0.687207, Time 00:00:27\n", |
| 109 | + "Epoch 15. Train Loss: 0.473396, Train Acc: 0.835212, Valid Loss: 0.842679, Valid Acc: 0.727930, Time 00:00:27\n", |
| 110 | + "Epoch 16. Train Loss: 0.459708, Train Acc: 0.840290, Valid Loss: 0.826854, Valid Acc: 0.726953, Time 00:00:28\n", |
| 111 | + "Epoch 17. Train Loss: 0.433836, Train Acc: 0.847931, Valid Loss: 0.730658, Valid Acc: 0.764258, Time 00:00:27\n", |
| 112 | + "Epoch 18. Train Loss: 0.422375, Train Acc: 0.854401, Valid Loss: 0.677953, Valid Acc: 0.778125, Time 00:00:27\n", |
| 113 | + "Epoch 19. Train Loss: 0.410208, Train Acc: 0.857370, Valid Loss: 0.787286, Valid Acc: 0.754102, Time 00:00:27\n", |
| 114 | + "Epoch 20. Train Loss: 0.395556, Train Acc: 0.862923, Valid Loss: 0.859754, Valid Acc: 0.738965, Time 00:00:27\n", |
| 115 | + "Epoch 21. Train Loss: 0.382050, Train Acc: 0.866554, Valid Loss: 1.266704, Valid Acc: 0.651660, Time 00:00:27\n", |
| 116 | + "Epoch 22. Train Loss: 0.368614, Train Acc: 0.871213, Valid Loss: 0.912465, Valid Acc: 0.738672, Time 00:00:27\n", |
| 117 | + "Epoch 23. Train Loss: 0.358302, Train Acc: 0.873964, Valid Loss: 0.963238, Valid Acc: 0.706055, Time 00:00:27\n", |
| 118 | + "Epoch 24. Train Loss: 0.347568, Train Acc: 0.879620, Valid Loss: 0.777171, Valid Acc: 0.751855, Time 00:00:27\n", |
| 119 | + "Epoch 25. Train Loss: 0.339247, Train Acc: 0.882215, Valid Loss: 0.707863, Valid Acc: 0.777734, Time 00:00:27\n", |
| 120 | + "Epoch 26. Train Loss: 0.329292, Train Acc: 0.885830, Valid Loss: 0.682976, Valid Acc: 0.790527, Time 00:00:27\n", |
| 121 | + "Epoch 27. Train Loss: 0.313049, Train Acc: 0.890761, Valid Loss: 0.665912, Valid Acc: 0.795410, Time 00:00:27\n", |
| 122 | + "Epoch 28. Train Loss: 0.305482, Train Acc: 0.891944, Valid Loss: 0.880263, Valid Acc: 0.743848, Time 00:00:27\n", |
| 123 | + "Epoch 29. Train Loss: 0.301507, Train Acc: 0.895289, Valid Loss: 1.062325, Valid Acc: 0.708398, Time 00:00:27\n" |
| 124 | + ] |
| 125 | + } |
| 126 | + ], |
| 127 | + "source": [ |
| 128 | + "writer = SummaryWriter()\n", |
| 129 | + "\n", |
| 130 | + "def get_acc(output, label):\n", |
| 131 | + " total = output.shape[0]\n", |
| 132 | + " _, pred_label = output.max(1)\n", |
| 133 | + " num_correct = (pred_label == label).sum().data[0]\n", |
| 134 | + " return num_correct / total\n", |
| 135 | + "\n", |
| 136 | + "if torch.cuda.is_available():\n", |
| 137 | + " net = net.cuda()\n", |
| 138 | + "prev_time = datetime.now()\n", |
| 139 | + "for epoch in range(30):\n", |
| 140 | + " train_loss = 0\n", |
| 141 | + " train_acc = 0\n", |
| 142 | + " net = net.train()\n", |
| 143 | + " for im, label in train_data:\n", |
| 144 | + " if torch.cuda.is_available():\n", |
| 145 | + " im = Variable(im.cuda()) # (bs, 3, h, w)\n", |
| 146 | + " label = Variable(label.cuda()) # (bs, h, w)\n", |
| 147 | + " else:\n", |
| 148 | + " im = Variable(im)\n", |
| 149 | + " label = Variable(label)\n", |
| 150 | + " # forward\n", |
| 151 | + " output = net(im)\n", |
| 152 | + " loss = criterion(output, label)\n", |
| 153 | + " # backward\n", |
| 154 | + " optimizer.zero_grad()\n", |
| 155 | + " loss.backward()\n", |
| 156 | + " optimizer.step()\n", |
| 157 | + "\n", |
| 158 | + " train_loss += loss.data[0]\n", |
| 159 | + " train_acc += get_acc(output, label)\n", |
| 160 | + " cur_time = datetime.now()\n", |
| 161 | + " h, remainder = divmod((cur_time - prev_time).seconds, 3600)\n", |
| 162 | + " m, s = divmod(remainder, 60)\n", |
| 163 | + " time_str = \"Time %02d:%02d:%02d\" % (h, m, s)\n", |
| 164 | + " valid_loss = 0\n", |
| 165 | + " valid_acc = 0\n", |
| 166 | + " net = net.eval()\n", |
| 167 | + " for im, label in valid_data:\n", |
| 168 | + " if torch.cuda.is_available():\n", |
| 169 | + " im = Variable(im.cuda(), volatile=True)\n", |
| 170 | + " label = Variable(label.cuda(), volatile=True)\n", |
| 171 | + " else:\n", |
| 172 | + " im = Variable(im, volatile=True)\n", |
| 173 | + " label = Variable(label, volatile=True)\n", |
| 174 | + " output = net(im)\n", |
| 175 | + " loss = criterion(output, label)\n", |
| 176 | + " valid_loss += loss.data[0]\n", |
| 177 | + " valid_acc += get_acc(output, label)\n", |
| 178 | + " epoch_str = (\n", |
| 179 | + " \"Epoch %d. Train Loss: %f, Train Acc: %f, Valid Loss: %f, Valid Acc: %f, \"\n", |
| 180 | + " % (epoch, train_loss / len(train_data),\n", |
| 181 | + " train_acc / len(train_data), valid_loss / len(valid_data),\n", |
| 182 | + " valid_acc / len(valid_data)))\n", |
| 183 | + " prev_time = cur_time\n", |
| 184 | + " # ====================== 使用 tensorboard ==================\n", |
| 185 | + " writer.add_scalars('Loss', {'train': train_loss / len(train_data),\n", |
| 186 | + " 'valid': valid_loss / len(valid_data)}, epoch)\n", |
| 187 | + " writer.add_scalars('Acc', {'train': train_acc / len(train_data),\n", |
| 188 | + " 'valid': valid_acc / len(valid_data)}, epoch)\n", |
| 189 | + " # =========================================================\n", |
| 190 | + " print(epoch_str + time_str)" |
| 191 | + ] |
| 192 | + }, |
| 193 | + { |
| 194 | + "cell_type": "markdown", |
| 195 | + "metadata": {}, |
| 196 | + "source": [ |
| 197 | + "" |
| 198 | + ] |
| 199 | + } |
| 200 | + ], |
| 201 | + "metadata": { |
| 202 | + "kernelspec": { |
| 203 | + "display_name": "Python 3", |
| 204 | + "language": "python", |
| 205 | + "name": "python3" |
| 206 | + }, |
| 207 | + "language_info": { |
| 208 | + "codemirror_mode": { |
| 209 | + "name": "ipython", |
| 210 | + "version": 3 |
| 211 | + }, |
| 212 | + "file_extension": ".py", |
| 213 | + "mimetype": "text/x-python", |
| 214 | + "name": "python", |
| 215 | + "nbconvert_exporter": "python", |
| 216 | + "pygments_lexer": "ipython3", |
| 217 | + "version": "3.6.2" |
| 218 | + } |
| 219 | + }, |
| 220 | + "nbformat": 4, |
| 221 | + "nbformat_minor": 2 |
| 222 | +} |
0 commit comments