@@ -20,13 +20,13 @@ Learn Deep Learning with PyTorch
20
20
- [ Tensor和Variable] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter2_PyTorch-Basics/Tensor-and-Variable.ipynb )
21
21
- [ 自动求导机制] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter2_PyTorch-Basics/autograd.ipynb )
22
22
- [ 动态图与静态图] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter2_PyTorch-Basics/dynamic-graph.ipynb )
23
- - 数据的读取
24
23
25
24
26
25
- Chapter 3: 神经网络
27
26
- [ 线性模型与梯度下降] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/linear-regression-gradient-descend.ipynb )
28
27
- [ Logistic 回归与优化器] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/logistic-regression/logistic-regression.ipynb )
29
28
- [ 多层神经网络,Sequential 和 Module] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/nn-sequential-module.ipynb )
29
+ - [ 深度神经网络] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/deep-cnn.ipynb )
30
30
- [ 参数初始化方法] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/param_initialize.ipynb )
31
31
- 优化算法
32
32
0 commit comments